Skip to main content
Log in

Lipid fluidity and membrane protein dynamics

  • Review
  • Published:
Bioscience Reports

Abstract

Membrane fluidity plays an important role in cellular functions. Membrane proteins are mobile in the lipid fluid environment; lateral diffusion of membrane proteins is slower than expected by theory, due to both the effect of protein crowding in the membrane and to constraints from the aqueous matrix. A major aspect of diffusion is in macromolecular associations: reduction of dimensionality for membrane diffusion facilitates collisional encounters, as those concerned with receptor-mediated signal transduction and with electron transfer chains. In mitochondrial electron transfer, diffusional control is prevented by the excess of collisional encounters between fast-diffusing ubiquinone and the respiratory complexes. Another aspect of dynamics of membrane proteins is their conformational flexibility. Lipids may induce the optimal conformation for catalytic activity. Breaks in Arrhenius plots of membrane-bound enzymes may be related to lipid fluidity: the break could occur when a limiting viscosity is reached for catalytic activity. Viscosity can affect protein conformational changes by inhibiting thermal fluctuations to the inner core of the protein molecule.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lenaz, G. and Parenti Castelli, G. (1985). In:Structure and Properties of Cell Membranes (G. Benga, Ed.), CRC Press, Boca Raton, FLA, Vol. 1, pp. 73–136.

    Google Scholar 

  2. Seelig, J. and Seelig, A. (1980).Q. Rev. Biophys. 13:19–61.

    Google Scholar 

  3. Jähnig, F. (1979).Proc. Natl. Acad. Sci. USA 76:6361–6365.

    Google Scholar 

  4. Jain, M. K. (1983). In:Membrane Fluidity in Biology (R. C. Aloia, Ed.), Academic Press, New York, Vol. 1, pp. 1–37.

    Google Scholar 

  5. Chapman, D., Gomez-Fernandez, J. C. Goni, F. M. (1979).FEBS Lett. 98:211–223.

    Google Scholar 

  6. Saffman, P. G. and Delbrück, M. (1975).Proc. Natl. Acad. Sci USA 72:3111–3114.

    Google Scholar 

  7. Vaz, W. L. C., Goodsaid-Zalbuondo, F. and Jacobson, K. (1984).FEBS Lett. 174:199–207.

    Google Scholar 

  8. Berg, H. C. (1983).Random Walks in Biology. Princeton University Press, Princeton, NJ.

    Google Scholar 

  9. Peters, R. (1985). In:Structure and Properties of Cell Membranes (G. Benga, Ed.), CRC Press, Boca Raton, FLA, vol. 1, pp. 35–50.

    Google Scholar 

  10. Lenaz, G. and Fato, R. (1986).J. Bioenerg. Biomembr. 18:369–401.

    Google Scholar 

  11. Galla, H. J., Hartmann, W., Thielen, V. and Sackmann, E. (1979).J. Membr. Biol. 48:215–236.

    Google Scholar 

  12. Cherry, R. J. (1979).Biochim. Biophys. Acta 559:289–327.

    Google Scholar 

  13. Peters, R. and Cherry, R. J. (1982).Proc. Natl. Acad. Sci. USA 79:4317–4321.

    Google Scholar 

  14. Eisinger, J., Flores, J. and Petersen, W. P. (1986).Biophys. J. 49:987–1001.

    Google Scholar 

  15. Vaz, W. L. C. and Hallmann, D. (1983).FEBS Lett. 152:287–290.

    Google Scholar 

  16. McCloskey, M. and Poo, M. M. (1985).Int. Rev. Cytol. 87:19–81.

    Google Scholar 

  17. Berg, D. G. and Von Hippel, P. H. (1985).Ann. Rev. Biophys. Chem. 14:131–160.

    Google Scholar 

  18. Orly, J. and Schramm, M. (1976).Proc. Natl. Acad. Sci. USA 73:4410–4414.

    Google Scholar 

  19. Tolkowsky, A. M. and Levitzki, A. (1978).Biochemistry 17:3795–3810.

    Google Scholar 

  20. Atlas, D., Volsky, D. J. and Levitzki, A. (1980).Biochim. Biophys. Acta 597:64–69.

    Google Scholar 

  21. Henis, Y. M. and Elson, E. L. (1981).Proc. Natl. Acad. Sci. USA 78:1072–1076.

    Google Scholar 

  22. Hirata, F. and Axelrod, J. (1980).Science 209:1082–1090.

    Google Scholar 

  23. Curatola, G. and Lenaz G. (1987). In:Proc. NATO Workshop: Biomechanics of Cell Division (N. Akkas, Ed.), Plenum, New York, pp. 33–77.

    Google Scholar 

  24. Schneider, H., Lemasters, J. J., Hackenbrock, C. R. (1985). In:Coenzyme Q (G. Lenaz, Ed.), Wiley, London, pp. 201–214.

    Google Scholar 

  25. Hackenbrock, C. R., Chazotte, B. and Gupte, S. S. (1986).J. Bioenerg. Biomembr. 18: 331–368.

    Google Scholar 

  26. Green, D. E. (1966). In:Comprehensive Biochemistry (M. Florkin and E. H. Stotz, Eds.), Elsevier, Amsterdam, pp. 309–327.

    Google Scholar 

  27. Kroger, A. and Klingenberg, M. (1973).Eur. J. Biochem. 34:358–368.

    Google Scholar 

  28. Fato, R., Battino, M., Degli Esposti, M., Parenti Castelli, G. and Lenaz, G. (1986).Biochemistry 25:3378–3390.

    Google Scholar 

  29. Gupte, S. S., Wu, E. S., Hoechli, L., Hoechli, M., Sowers, A. E. and Hackenbrock, C. R. (1984).Proc. Natl. Acad. Sci. USA 81:2606–2610.

    Google Scholar 

  30. Ferguson-Miller, S., Rajarathnam, K., Hochman, J. and Schindler, M. (1987).Int. Conf.: Integration of Mitochondrial Functions (J. J. Lemasters, C. R. Hackenbrock, R. G. Thurman and H. V. Westerhoff, Eds.), Plenum, New York, in press.

    Google Scholar 

  31. Lenaz, G. (1979).Subcell. Biochem. 6:233–240.

    Google Scholar 

  32. Parenti Castelli, G., Fato, R. and Lenaz, G. (1987).Life Sci. Advan., in press.

  33. Kawato, S., Gut, J., Cherry, R. J., Winterhalter, K. H. and Richter, C. (1982)J. Biol. Chem. 257:7023–7029.

    Google Scholar 

  34. Gut, J., Richter, C., Cherry, R. J., Winterhalter, K. H. and Kawato, S. (1983).J. Biol. Chem. 258:8588–8594.

    Google Scholar 

  35. Kyte, J. and Doolittle, R. F. (1982).J. Mol. Biol. 157:105–132.

    Google Scholar 

  36. Deisendorfer, J., Epp, D., Miki, K., Huber, R., and Michel, H. (1985).Nature 318:618–624.

    Google Scholar 

  37. Urry, D. W. (1985). In:The Enzymes of Biological Membranes (A. N. Martonosi, Ed.), Plenum, New York, Vol. 1, pp. 229–257.

    Google Scholar 

  38. Battino, M., Castelluccio, C., Pilarska, M. G. and Lenaz, G. (1986).Cell. Biol. Int. Reports 10:15.

    Google Scholar 

  39. Kramer, R. (1982).Biochim. Biophys. Acta 693:296–304.

    Google Scholar 

  40. Calanni-Rindina, F., Baracca, A., Solaini, G., Rabbi, A. and Parenti Castelli, G. (1986).FEBS Lett. 198:353–356.

    Google Scholar 

  41. Parenti Castelli, G., Fato, R., Castelluccio, C. and Lenaz, G. (1987).Chem. Scripta 27:161–166.

    Google Scholar 

  42. Parlo, R. A. and Coleman, P. S. (1984).J. Biol. Chem. 259:9997–10003.

    Google Scholar 

  43. Beece, D., Eisenstein, L., Fraunfelder, H., Good, D., Marden, M. C., Keinisch, L., Reynolds, A. H., Sorensen, L. B. and Yue, R. T. (1980).Biochemistry 19:5147–5157.

    Google Scholar 

  44. Somogyi, B., Welch, C. R. and Damjanovich, S. (1984).Biochim. Biophys. Acta 768: 81–112.

    Google Scholar 

  45. Heremans, K. (1982).Ann. Rev. Biophys. Bioeng. 11:1–21.

    Google Scholar 

  46. Shinitzky, M. (1984). In:Physiology of Membrane Fluidity (M. Shinitzky, Ed.), CRC Press, Boca Raton, FLA, Vol. 1, pp. 1–51.

    Google Scholar 

  47. Johansson, A., Keithly, C. A., Smith, G. A., Richards, C. D., Hesketh, T. R. and Metcalfe, J. C. (1981).J. Biol. Chem. 256:1643–1650.

    Google Scholar 

  48. Lenaz, G. (1987). In:Basic and Medical Research on Biomembranes (G. Benga, Ed.), Springer-Verlag, Berlin, in press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lenaz, G. Lipid fluidity and membrane protein dynamics. Biosci Rep 7, 823–837 (1987). https://doi.org/10.1007/BF01119473

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01119473

Key Words

Navigation