Skip to main content
Log in

DNA cytosine methylation and heat-induced deamination

  • Short Papers
  • Published:
Bioscience Reports

Abstract

The heat-induced conversion of 5-methylcytosine (m5C) residues to thymine residues and of cytosine to uracil residues in single-stranded DNA was studied. The calculated rates for deamination at 37°C and pH 7.4 were ∼9.5×10−10 and 2.1×10−10 sec−1, respectively. N4-Methyldeoxycytidine, which is in the DNA of certain thermophilic bacteria, was more heat-resistant than was deoxycytidine and much more than was 5-methyldeoxycytidine. Thermophilic bacteria which contain N4-methylcytosine rather than m5C in their genomes may thereby largely avoid heat-induced mutation due to deamination, which is incurred by the many organisms that contain m5C in their DNA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Ehrlich, M., and Wang, R. Y.-H. (1981).Science 212:1350–1357.

    PubMed  Google Scholar 

  2. Doerfler, W. (1983).Ann. Rev. Biochem. 52:93–124.

    PubMed  Google Scholar 

  3. Jaenisch, R., and Jahner, D. (1984).Biochim. Biophys. Acta 782:1–9.

    PubMed  Google Scholar 

  4. Hattman, S. (1983).The Enzymes 14:514–548.

    Google Scholar 

  5. Vanyushin, B. F., Mazin, A. L., Vasilyev, V. K., and Belozersky, A. N. (1983).Nature 225:948–949.

    Google Scholar 

  6. Ehrlich, M., Gama-Sosa, M. A., Huang, L.-H., Midgett, R. M., Kuo, K. C., McCune, R. A., and Gehrke, C. (1982).Nucleic Acids Res. 10:2709–2721.

    PubMed  Google Scholar 

  7. Gama-Sosa, M. A., Midgett, R. M., Slagel, V. A., Githens, S., Kuo, K. C., Gehrke, C. W., and Ehrlich, M. (1983).Biochim. Biophys. Acta 740:212–219.

    PubMed  Google Scholar 

  8. Coulondre, C., Miller, J. H., Farabaugh, P. J., and Gilbert, W. (1978).Nature 274:775–780.

    PubMed  Google Scholar 

  9. Bird, A. P. (1980).Nucleic Acids Res. 8:1499–1504.

    PubMed  Google Scholar 

  10. Russell, G. J., Walker, P. M. B., Elton, R. A., and Subak-Sharpe, J. H. (1976).J. Mol. Biol. 108:1–23.

    PubMed  Google Scholar 

  11. Cooper, D. N., and Gerber-Huber, S. (1985).Cell Diffn. 17:199–205.

    Google Scholar 

  12. Savatier, P., Trabuchet, G., Faure, C., Chebloune, Y., Gouy, M., Verdier, G., and Nigon, V. M. (1985).J. Mol. Biol. 182:21–29.

    PubMed  Google Scholar 

  13. Barker, D., Schafer, M., and White, R. (19840.Cell 36:131–138.

    PubMed  Google Scholar 

  14. Lindahl, T., and Nyberg, B. (1974).Biochemistry 13:3405–3410.

    PubMed  Google Scholar 

  15. Wang, R. Y.-H., Kuo, K. C., Gehrke, C. W., Huang, L.-H., and Ehrlich, M. (1982).Biochim. Biophys. Acta 697:371–377.

    PubMed  Google Scholar 

  16. Ehrlich, M., Gama-Sosa, M. A., Carreira, L. H., Ljungdahl, L. G., Kuo, K. C., and Gehrke, C. W. (1985).Nucleic Acids Res. 13:1399–1412.

    PubMed  Google Scholar 

  17. Messing, J. (1983).Meth. Enzymol. 101:20–78.

    PubMed  Google Scholar 

  18. Busslinger, M., deBoer, E., Wright, S., Grosveld, F. G., and Flavell, R. A. (1983).Nucleic Acids Res. 11:3559–3569.

    PubMed  Google Scholar 

  19. Wang, R. Y.-H., Huang, L.-H., and Ehrlich, M. (1984).Nucleic Acids Res. 12:3473–3490.

    PubMed  Google Scholar 

  20. Kuo, K. C., McCune, R. A., Gehrke, C. W., Midgett, R., and Ehrlich, M. (1980).Nucleic Acids Res. 8:4763–4776.

    PubMed  Google Scholar 

  21. Gehrke, C. W., McCune, R. A., Gama-Sosa, M. A., Ehrlich, M., and Kuo, K. C. (1984).J. Chromatog. 301:199–219.

    Google Scholar 

  22. Wang, R. Y.-H., Gehrke, C. W., and Ehrlich, M. (1980).Nucleic Acids Res. 8: 4777–4789.

    PubMed  Google Scholar 

  23. Huang, L.-H., Wang, R., Gama-Sosa, M. A., Shenoy, S., and Ehrlich, M. (1984).Nature 308:293–295.

    PubMed  Google Scholar 

  24. McClelland, M., and Ivarie, P. (1982).Nucleic Acids Res. 10:7865–7887.

    PubMed  Google Scholar 

  25. Tykocinski, M. L., and Max, E. E. (1984).Nucleic Acids Res. 12:4385–4396.

    PubMed  Google Scholar 

  26. Adams, R. L. P., and Eason, R. (1984).Nature 312:407–408.

    Google Scholar 

  27. Erkison, R. P. (1984).Nature 311:217.

    PubMed  Google Scholar 

  28. Grantham, R. (1985).Nature 313:437.

    PubMed  Google Scholar 

  29. Max, E. E. (1985).Nature 313:437–438.

    PubMed  Google Scholar 

  30. Lindahl, T. (1979). In:Progress in Nucleic Acid Research and Molecular Biology (W. E. Cohen, Ed.), Vol. 22, pp. 135–192, Academic Press, New York.

    Google Scholar 

  31. Caradonna, S. J., and Cheng, Y. (1981).J. Biol. Chem. 256:9834–9837.

    PubMed  Google Scholar 

  32. Warner, H. R., Thompson, R. B., Mozer, T. J., and Duncan, B. K. (1979).J. Biol. Chem. 254:7534–7539.

    PubMed  Google Scholar 

  33. Tye, B.-K., Chien, J., Lehman, I. R., Duncan, B. K., and Warner, H. R. (1978).Proc. Natl. Acad. Sci. USA 75:233–237.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ehrlich, M., Norris, K.F., Wang, R.Y. et al. DNA cytosine methylation and heat-induced deamination. Biosci Rep 6, 387–393 (1986). https://doi.org/10.1007/BF01116426

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01116426

Key Words

Navigation