Skip to main content
Log in

Mechanical properties of alkoxy-derived cordierite ceramics

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Mechanical properties of cordierite ceramics prepared by the controlled hydrolysis and following polycondensation of aluminium, magnesium and silicon alkoxides were investigated in great detail. Flexural strengths ofμ- andα-cordierite ceramics are about 60 and 100 MPa, respectively. The flexural strengths of these ceramics are mainly influenced by cracks arising from thermal mismatch between μ- and α-cordierite precipitated during sintering. High fracture toughness ofα-cordierite ceramics prepared by this method is ascribed to the fine microstructure of the ceramics. The high-temperature flexural strength ofα-cordierite ceramics is little reduced below 1000° C because of high purity of the ceramics.[/p]

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Hirano, T. Hayashi andT. Kageyama,J. Am. Ceram. Soc. 70 (1987) 171.

    Google Scholar 

  2. K. Oda andT. Yoshio,J. Mater. Sci. Lett. 5 (1986) 545.

    Google Scholar 

  3. J. C. Debsikdar,J. Mater. Sci. 20 (1985) 4454.

    Google Scholar 

  4. T. Hayashi andH. Saito,ibid. 15 (1980) 1971.

    Google Scholar 

  5. T. Hayashi, T. Yamada andH. Saito,ibid. 18 (1983) 3134.

    Google Scholar 

  6. K. Kamiya andS. Sakka,J. Chem. Soc. Jpn(1981) 1571.

  7. Y. Hirata, H. Minamizono andK. Shimada,Yogyo-Kyokai-Shi 93 (1985) 36.

    Google Scholar 

  8. H. Suzuki, K. Ota andH. Saito,ibid. 95 (1987) 163.

    Google Scholar 

  9. Y. Hirose, H. Doi andO. Kamigaito,J. Mater. Sci. Lett. 3 (1984) 153.

    Google Scholar 

  10. Idem, ibid. 3 (1984) 95.

    Google Scholar 

  11. L. W. Herron, IBM East, Fishkill, New York, personal communication (1982).

  12. D. R. Bridge, D. Holland and P. W. McMillan,Glass Technol. 26 (1985) 286.

    Google Scholar 

  13. R. Morell,Proc. Brit. Ceram. Soc. 28 (1979) 53.

    Google Scholar 

  14. H. Suzuki, K. Ota andH. Saito,Yogyo-Kyokai-Shi 95 (1987) 170.

    Google Scholar 

  15. D. B. Marshall, T. Noma andA. G. Evans,J. Amer. Ceram. Soc. 65 (1982) C-175.

    Google Scholar 

  16. K. Niihara,Bull. Ceram. Soc. Jpn 20 (1985) 12.

    Google Scholar 

  17. J. D. Lee andJ. L. Pentecost,J. Amer. Ceram. Soc. 59 (1976) 183.

    Google Scholar 

  18. D. L. Evans, G. R. Fischer, J. E. Geiger andF. W. Martin,ibid. 63 (1980) 629.

    Google Scholar 

  19. T. I. Barry, L. A. Lay andR. Morell, “Cordierite-Glass-Ceramics — Optimization of Heat Treatment”, in “Science of Ceramics”, Vol. 8 (British Ceramic Society, Stokeon-Trent, 1976) pp. 331–46.

    Google Scholar 

  20. A. A. Griffith,Phil. Trans. R. Soc. 221 (1920) 163.

    Google Scholar 

  21. B. J. Pletka andS. M. Wiederhorn,J. Mater. Sci. 17 (1982) 1247.

    Google Scholar 

  22. H. Miska, Corning Glass Works, Corning, New York, personal communication (1983).

    Google Scholar 

  23. S. M. Wiederhorn,J. Amer. Ceram. Soc. 52 (1969) 99.

    Google Scholar 

  24. T. I. Barry, L. A. Lay andR. Morell,Proc. Brit. Ceram. Soc. 22 (1973) 27.

    Google Scholar 

  25. G. R. Anstis, P. Chantikul, B. R. Lawn andD. B. Marshall,J. Amer. Ceram. Soc. 64 (1981) 533.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suzuki, H., Ota, K. & Saito, H. Mechanical properties of alkoxy-derived cordierite ceramics. J Mater Sci 23, 1534–1538 (1988). https://doi.org/10.1007/BF01115687

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01115687

Keywords

Navigation