Skip to main content
Log in

A model for the asymmetric lipid distribution in the human erythrocyte membrane

  • Short Papers
  • Published:
Bioscience Reports

Abstract

The asymmetric transverse distribution of phospholipids in the human erythrocyte membrane can be explained by differences between the rate constants of flip and flop motion of the lipids. A selective interaction between aminophospholipids and spectrin does not need to be assumed for creating and maintaining the asymmetric localization of these lipids. Shape transformation of red cells could be caused by alterations of the flip-flop rate constants leading to a change of the lipid distribution and, consequently, to a differential area expansion of the outer and inner membrane leaflet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Op den Kamp, J. A. F. (1980). InNew Comprehensive Biochemistry, Vol. 1, Membrane Structure (J. B. Finean, and R. H. Mitchell, Eds.), pp. 83–125, Elsevier, Amsterdam, New York.

    Google Scholar 

  2. Nordlund, J. R., Schmidt, C. F., Dicken, S. N., and Thompson, T. E. (1981).Biochemistry 20:3237–3247.

    Google Scholar 

  3. Israelachvili, J. N. (1973).Biochim. Biophys. Acta 323:659–663.

    Google Scholar 

  4. McLaughlin, S., and Haray, H. (1974).Biophys. J. 14:200–208.

    Google Scholar 

  5. Koyonova, R. D., and Tenchov, B. G. (1983).Biochim. Biophys. Acta 727:351–356.

    Google Scholar 

  6. Tenchov, B. G., and Koyonov, R. D. (1985).Biochim. Biophys. Acta 815:380–391.

    Google Scholar 

  7. Kumar, A., and Cupto, C. M. (1984).Biochim. Biophys. Acta 769:419–428.

    Google Scholar 

  8. Benga, G., and Holmes, R. P. (1984).Progr. Biophys. Molec. Biol. 43:195–257.

    Google Scholar 

  9. Dressler, V., Haest, C. W. M., Plasa, G., Deuticke, B., and Erusalimsky, J. D. (1984).Biochim. Biophys. Acta 775:189–196.

    Google Scholar 

  10. Haest, C. W. M., Plasa, G., Kamp, D., and Deuticke, B. (1978). InMembrane Transport in Erythrocytes, Alfred Benzon Symp. 14 (U. V. Lassen, H. H. Ussing, and J. O. Wieth), Munksgaard, Kopenhagen, 1980, pp. 108–119.

    Google Scholar 

  11. Haest, C. W. M., Plasa, G., Kamp, D., and Deuticke, B. (1978).Biochim. Biophys. Acta 509:21–32.

    Google Scholar 

  12. Haest, C. W. M., and Deuticke, B. (1975).Biochim. Biophys. Acta 401:468–476.

    Google Scholar 

  13. Mombers, C., De Gier, J., Demel, R. A., and Van Deenen, L. L. M. (1980).Biochim. Biophys. Acta 603:52–62.

    Google Scholar 

  14. Elgsaeter, A., Shotton, D. M., and Branton, D. (1976).Biochim. Biophys. Acta 426: 101–122.

    Google Scholar 

  15. Raval, P. J., and Allan, D. (1984).Biochem. J. 223:555–557.

    Google Scholar 

  16. Raval, P. J., and Allan, D. (1984).Biochim. Biophys. Acta 772:192–196.

    Google Scholar 

  17. Seigneuret, M., Zachowski, A., Herrmann, A., and Devaux, P. F. (1984).Biochemistry 23:4271–4275.

    Google Scholar 

  18. Seigneuret, M., and Devaux, P. F. (1984).Proc. Natl. Acad. Sci. US 81:3751–3755.

    Google Scholar 

  19. Bergmann, W. L., Dressler, V., Haest, C. W. M., and Deuticke, B. (1984).Biochim. Biophys. Acta 769:390–398.

    Google Scholar 

  20. Bergmann, W. L., Dressler, V., Haest, C. W. M., and Deuticke, B. (1984).Biochim. Biophys. Acta 772:328–336.

    Google Scholar 

  21. Zachowski, A., Fellmann, P., and Devaux, P. F. (1985).Biochim. Biophys. Acta 815: 510–514.

    Google Scholar 

  22. Gordesky, S. E., and Marinetti, G. V. (1973).Biochem. Biophys. Res. Commun. 50:1027–1031.

    Google Scholar 

  23. Verkleij, A. J., Zwaal, R. F. A., Roelofson, B., Confurius, P., Kastelijn, J., and Van Deenen, L. L. M. (1973).Biochim. Biophys. Acta 323:178–193.

    Google Scholar 

  24. Zachowski, A., Craesu, C. T., Galacteros, F., and Devaux, P. F. (1985).J. Clin. Invest. 75:1713–1717.

    Google Scholar 

  25. Wise, G. E. (1984).Tissue and Cell 16:665–676.

    Google Scholar 

  26. Devaux, P. F., and Seigneuret, M. (1985).Biochim. Biophys. Acta 822:63–125.

    Google Scholar 

  27. Marsh, D. (1983).Trends Biochem. Sci. 8:330–333.

    Google Scholar 

  28. Mouritsen, O. G., and Bloom, M. (1984).Biophys. J. 46:141–153.

    Google Scholar 

  29. Yeagle, P. L. (1984).J. Membr. Biol. 78:201–210.

    Google Scholar 

  30. Seigneuret, M., Favre, E., Morrot, G., and Devaux, P. F. (1985).Biochim. Biophys. Acta 813:174–182.

    Google Scholar 

  31. Ferrel, J. E., Lee, K. J., and Huestis, W. H. (1985).Biochemistry 24:2849–2857.

    Google Scholar 

  32. Lange, Y., and Slayton, J. (1982).J. Lipid Res. 23:1121–1127.

    Google Scholar 

  33. Beck, J. S. (1978).J. Theor. Biol. 75:487–501.

    Google Scholar 

  34. Sheetz, M. P., and Singer, S. J. (1977).J. Cell. Biol. 70:247–251.

    Google Scholar 

  35. Patel, V. P., and Fairbanks, G. (1981).J. Cell Biol. 88:430–440.

    Google Scholar 

  36. Anderson, J. M., and Tyler, J. M. (1980).J. Biol. Chem. 255:1259–1265.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Herrmann, A., Müller, P. A model for the asymmetric lipid distribution in the human erythrocyte membrane. Biosci Rep 6, 185–191 (1986). https://doi.org/10.1007/BF01115005

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01115005

Key Words

Navigation