Skip to main content
Log in

Effect of test method and crack size on the fracture toughness of a chain-silicate glass-ceramic

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The fracture toughness of a canasite glass-ceramic with a highly acicular, interlocked grain structure was measured by a number of different methods. The values at room temperature obtained by the chevron-notch, short-bar and notched-beam methods ranged from 4 to 5 M Pa m−1/2, well above literature values for other glass-ceramics. Similar values of toughness were obtained by the fracture of bars with indentation cracks introduced with loads ranging from 1.96 to 400 N, but only for crack sizes >200 μm, with lower values for cracks of smaller size. The toughness values obtained by the direct measurement of the size of the indentation cracks were appreciably lower than the values obtained by all other methods over the total range of indentation loads and corresponding crack size. SEM fractography showed that the surface within the indentation cracks was appreciably smoother than the surrounding fracture surface. The high values of fracture toughness were attributed to the combined mechanisms of crack-deflection and microcrack-toughening due to the stress-enhanced creation of microcracks caused by the residual stresses which arise from the thermal expansion anisotropy of the canasite monoclonic crystal structure. The strong negative temperature dependence of the fracture toughness suggests that at room temperature microcrack toughening represents the primary contributing mechanism to the fracture toughness. The combined effects of crack-deflection and microcrack-toughening can lead to the development of glass-ceramics with greatly improved resistance to crack propagation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. P. H. Hasselman,J. Amer. Ceram. Soc. 52 (1969) 600.

    Google Scholar 

  2. A. G. Evans andA. Heuer,ibid. 63 (1980) 241.

    Google Scholar 

  3. R. M. McMeeking andA. G. Evans,ibid. 65 (1982) 242.

    Google Scholar 

  4. Y. Fu andA. G. Evans,Acta Metall. 30 (1982) 1619.

    Google Scholar 

  5. A. G. Evans andK. T. Faber,J. Amer. Ceram. Soc. 67 (1984) 255.

    Google Scholar 

  6. K. T. Faber andA. G. Evans,Acta Metall. 31 (1983) 565.

    Google Scholar 

  7. A. G. Evans, A. H. Heuer andD. L. Porter, Proceedings of the Fourth International Conference on Fracture, edited by D. M. R. Taplin (University of Waterloo Press, 1977) Vol. 1, p. 529.

  8. F. F. Lange,J. Amer. Ceram. Soc. 56 (1973) 518.

    Google Scholar 

  9. K. T. Faber andA. G. Evans,Acta Metall. 31 (1983) 577.

    Google Scholar 

  10. R. Morena, K. Niihara andD. P. H. Hasselman,J. Amer. Ceram. Soc. 66 (1983) 673.

    Google Scholar 

  11. A. G. Evans andE. A. Charles,ibid,59 (1976) 371.

    Google Scholar 

  12. K. Niihara, R. Morena andD. P. H. Hasselman,J. Mater. Sci. Lett. 1 (1982) 13.

    Google Scholar 

  13. P. Chantikul, G. R. Anstis, B. R. Lawn andD. B. Marshall,J. Amer. Ceram. Soc. 64 (1981) 539.

    Google Scholar 

  14. W. F. Brown Jr andJ. E. Srawley, ASTM Special Technical Publication 410 (American Society for Testing and Materials, Philadelphia, Pennsylvania, 1966) 13.

    Google Scholar 

  15. D. G. Munz, J. L. Shannon andR. T. Bubsey,Int. J. Fracture 16 (1980) R137.

    Google Scholar 

  16. D. G. Munz, R. T. Bubsey andJ. E. Srawley,ibid. 16 (1980) 359.

    Google Scholar 

  17. J. C. Swearengen andR. J. Eagan,J. Mater. Sci. 11 (1976) 1857.

    Google Scholar 

  18. B. G. Koepke, K. D. McHenry andW. D. Savage,Bull. Amer. Ceram. Soc. 58 (1979) 1100.

    Google Scholar 

  19. R. C. Brandt, D. P. H. Hasselman andF. F. Lange, (eds), “Fracture mechanics of Ceramics”, Vols. 1 and 2 (Plenum Press, New York, 1974).

    Google Scholar 

  20. Idem (Plenum, New York, 1978).

    Google Scholar 

  21. Idem (Plenum, New York, 1983).

    Google Scholar 

  22. B. R. Lawn, in “Fracture Mechanics of Ceramics”, Vol. 5, edited by R. C. Bradt, A. G. Evans, D. P. H. Hasselman and F. F. Lange (Plenum Press, New York, 1983) p. 1.

    Google Scholar 

  23. S. Baskaran, S. B. Bhaduri andD. P. H. Hasselman,J. Amer. Ceram. Soc. 68 (1985) 112.

    Google Scholar 

  24. B. R. Lawn andE. R. Fuller,J. Mater. Sci. 10 (1975) 2016.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beall, G.H., Chyung, K., Stewart, R.L. et al. Effect of test method and crack size on the fracture toughness of a chain-silicate glass-ceramic. J Mater Sci 21, 2365–2372 (1986). https://doi.org/10.1007/BF01114280

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01114280

Keywords

Navigation