Skip to main content
Log in

Diagonalisierungspaare. II

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. Baron, S.: Reflectors as compositions of epi-reflectors. Trans. Amer. Math. Soc.136, 499–508 (1969).

    Google Scholar 

  2. Gabriel, P.: Des categories abeliennes. Bull. Soc. Math. France90, 323–448 (1962).

    Google Scholar 

  3. Goldman, O.: Rings and modules of quotients. J. Algebra13, 10–47 (1967).

    Google Scholar 

  4. Isbell, J. R.: Subobjects, adequacy, completeness and categories of algebras. Rozprawy Mat. XXXVI, 1964.

  5. Kennison, J. F.: Full reflective subcategories and generalized covering spaces. Illinois J.12, 353–365 (1968).

    Google Scholar 

  6. Lambek, J.: Completion of categories. Lecture Notes 24. Berlin-Heidelberg-New York: Springer 1966.

    Google Scholar 

  7. Mitchell, B.: Theory of categories. New York: Academic Press 1965.

    Google Scholar 

  8. Ringel, C. M.: Diagonalisierungspaare. I. Math. Z.117, 249–266 (1970).

    Google Scholar 

  9. Schubert, H.: Kategorien I, II. Berlin-Heidelberg-New York: Springer 1970.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ringel, C.M. Diagonalisierungspaare. II. Math Z 122, 10–32 (1971). https://doi.org/10.1007/BF01113561

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01113561

Navigation