Skip to main content
Log in

The ring opening of cyclopropylidene to allene: global features of the reaction surface

  • Published:
Theoretica chimica acta Aims and scope Submit manuscript

Summary

The global features of the groundstate ring opening of cyclopropylidene to allene are studied by means ofab-initio FORS MCSCF calculations based on a minimal AO basis set. The energy surface is completely mapped out in terms of three reaction coordinates, namely the CCC ring-opening angle and two angles describing the rotations of the CH2 groups. For each choice of these three variables, the twelve remaining internal coordinates are optimized by energy minimization. In the initial phase of the reaction, as the CCC angle opens, the CH2 groups rotate in a disrotatory manner, maintainingC s symmetry. This uphill reaction path leads to a transition region which occurs early, for a CCC angle of about 84°. In this transition region the reaction path branches into two pathways which are each others' mirror images. The system exhibits thus abifurcating transition region. Passed this region, the two pathways are overall conrotatory in character. However, these downhill reaction paths to the products are poorly defined because, from a CCC opening angle of about 90° on,the CH 2 groups can rotate freely and isoenergetically in a synchronized, cogwheel-like manner and this disrotatory motion can mix unpredictably with the conrotatory downhill motion. There is no preference for any one of the two reaction pathways yielding the two stereoisomers of allene and the reaction is thereforenonstereospecific with respect to the numbered hydrogen atoms. The global surface is documented by means of contour maps representing slices corresponding to constant CCC angles. The bifurcating transition region is mapped in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Almenningen A, Bastiansen O, Traetteberg M (1959) Acta Chem Scand 13:1699

    Google Scholar 

  2. Angus RO Jr, Schmidt MW, Johnson RP (1985) J Am Chem Soc 107:532

    Google Scholar 

  3. Binkley JS, Pople JA, Hehre WJ (1980) J Am Chem Soc 102:939

    Google Scholar 

  4. Bodor N, Dewar MJS, Maksic ZB (1973) J Am Chem Soc 95:5245

    Google Scholar 

  5. Borden WT (1967) Tetrahedron Lett 5:447 and a widely quoted private communication

    Google Scholar 

  6. Carsky P, Urban M (1980) In: Berthier G, Dewar MJS, Fischer H, Fukui K, Hartmann H, Jaffe HH, Jortner J, Kutzelnigg W, Ruedenberg K, Scrocco E, Zeil W (eds)Ab initio. Springer, Berlin Heidelberg New York

    Google Scholar 

  7. Chapman OL (1974) Pure Appl Chem 40:511

    Google Scholar 

  8. Cheung LM, Sundberg KR, Ruedenberg K (1979) Int J Quantum Chem 16:1103

    Google Scholar 

  9. Dillon PW, Underwood GR (1977) J Am Chem Soc 99:2435

    Google Scholar 

  10. Dombek MG (1977) PhD Dissertation, Iowa State University and Ruedenberg K (1978) Proceedings of Workshop on Post-Hartree-Fock Methods, National Resource for Computation in Chemistry, Lawrence Berkeley Laboratory, University of California

  11. Dupuis M, King HF (1978) J Chem Phys 68:3998

    Google Scholar 

  12. Dupuis M, Spangler D, Wendoloski JJ (1980) Nat Resour Comput Chem Software Cat. 1, Prog. No. QG01 (GAMESS)

  13. Dykstra CE (1977) J Am Chem Soc 99:2060

    Google Scholar 

  14. Dykstra CE, Schaefer HF III (1980) In: Patai S (ed) The chemistry of ketenes, allenes and related compounds. Wiley, Interscience, New York, p 1 and references therein

    Google Scholar 

  15. Edmiston C, Ruedenberg K (1963) Rev Mod Phys 35:457

    Google Scholar 

  16. Elbert ST, Cheung LM, Ruedenberg K (1980) Nat Resour Comput Chem Software Cat 1, Prog. No. QM01 (ALIS)

  17. Elbert ST, Ruedenberg K (to be published)

  18. Feller DF (1979) PhD Dissertation, Iowa State University

  19. Feller DF, Schmidt MW, Ruedenberg K (1982) J Am Chem Soc 104:960

    Google Scholar 

  20. Fukui K (1981) Int J Quantum Chem 515:633–42

    Google Scholar 

  21. Hariharan PC, Pople JA (1973) Theor Chim Acta 28:213

    Google Scholar 

  22. Hegelund F, Duncan JL, McKean DC (1977) J Mol Spectrosc 65:366

    Google Scholar 

  23. Hehre WJ, Ditchfield R, Pople JA (1972) J Chem Phys 56:2257

    Google Scholar 

  24. Hehre WJ, Ditchfield R, Stewart RF, Pople JA (1970) J Chem Phys 52:2769

    Google Scholar 

  25. Hehre WJ, Stewart RF, Pople JA (1968) Symp Faraday Soc 2:15

    Google Scholar 

  26. Hehre WJ, Stewart RF, Pople JA (1969) J Chem Phys 51:2657

    Google Scholar 

  27. Herzberg G (1966) Electronic spectra of polyatomic molecules. Van Nostrand Reinhold, New York

    Google Scholar 

  28. Honjou N, Pacansky J, Yoshimine M (1984) J Am Chem Soc 106:5361

    Google Scholar 

  29. Honjou N, Pacansky J, Yoshimine M (1985)Ab initio studies of the C3H surface: I. SCF and CI study of structures and stabilities of isomers. J Am Chem Soc

  30. Ishida K, Morokuma K, Komornicki A (1977) J Chem Phys 66:2153–6

    Google Scholar 

  31. Johnson RP, private communication

  32. Johnson RP, Schmidt MW (1981) J Am Chem Soc 103:3244

    Google Scholar 

  33. Jones WM, Krause DL (1971) J Am Chem Soc 93:551

    Google Scholar 

  34. Jones WM, Walbrick JM (1969) J Org Chem 34:2217

    Google Scholar 

  35. Jones WM, Wilson JW Jr (1965) Tetrahedron Lett 21:1587

    Google Scholar 

  36. Jones WM, Wilson JW Jr, Tutwiler FB (1963) J Am Chem Soc 85:3309

    Google Scholar 

  37. Krogh-Jespersen K (1982) J Comp Chem 3:571

    Google Scholar 

  38. Lam B (1984) PhD Dissertation, Iowa State University

  39. Lam B, Johnson RP (1983) J Am Chem Soc 105:7479

    Google Scholar 

  40. Lord RC, Venkatesvarlu P (1952) J Chem Phys 20:1237

    Google Scholar 

  41. Liu X, Ruedenberg K (to be published)

  42. McIver JW Jr, Komornicki A (1971) Chem Phys Lett 10:303

    Google Scholar 

  43. McIver JW Jr, Komornicki A (1972) J Am Chem Soc 94:2625

    Google Scholar 

  44. Maki AG, Toth RA (1965) J Mol Spectrosc 17:136

    Google Scholar 

  45. Møller C, Plesset MS (1934) Phys Rev 46:618

    Google Scholar 

  46. Pasto DJ, Haley M, Chipman DM (1978) J Am Chem Cos 100:5272

    Google Scholar 

  47. Pople JA, Binkley JS, Seeger R (1976) Int J Quantum Chem Symp 10:1

    Google Scholar 

  48. Rauk A, Bouma WJ, Radom L (1985) J Am Chem Soc 107:3780

    Google Scholar 

  49. Roos BO (1980) Int J Quantum Chem 14:175

    Google Scholar 

  50. Roos BO, Taylor PR, Siegbahn PEM (1980) Chem Phys 48:157

    Google Scholar 

  51. Roth WR, Ruf F, Ford PW (1974) Chem Ber 107:48

    Google Scholar 

  52. Ruedenberg K (1971) Phys Rev Lett 27:1105

    Google Scholar 

  53. Ruedenberg K, Cheung LM, Elbert ST (1979) Int J Quantum Chem 16:1069

    Google Scholar 

  54. Ruedenberg K, Schmidt MW, Gilbert MM, Elbert ST (1982) Chem Phys 71:41 51 and 65

    Google Scholar 

  55. Ruedenberg K, Poshusta R (1972) Adv Quantum Chem 6:267

    Google Scholar 

  56. Ruedenberg K, Sundberg KR (1976) In: Calais JL, Goscinski O, Linderberg J, Ohrn Y (eds) Quantum Science. Plenum Press, New York, p 505; Ruedenberg K (1978) Proceedings of Workshop on Post-Hartree-Fock Methods, National Resource for Computations in Chemistry, Lawrence Berkeley Laboratory, University of California; Sundberg KR (1975) PhD Dissertation, Iowa State University

    Google Scholar 

  57. Runge W (1980) In: Patai S (ed) The chemistry of ketenes, allenes and related compounds. Wiley, Interscience, New York, p 45 and references therein

    Google Scholar 

  58. Salmon WI, Cheung LM, Ruedenberg K (1972) J Chem Phys 57:2776 and 2787

    Google Scholar 

  59. Schlegel HB (1982) J Comp Chem 3:214

    Google Scholar 

  60. Schmidt MW (1982) PhD Dissertation, Iowa State University

  61. Schmidt MW, Gordon MS, Dupuis M (1985) J Am Chem Soc 107:2585–9

    Google Scholar 

  62. Seeger R, Krishnan R, Pople JA, Schleyer P von R (1977) J Am Chem Soc 99:7103

    Google Scholar 

  63. Siegbahn PEM, Almlof J, Heiberg A, Roos BO (1981) J Chem Phys 74:

  64. Siegbahn PEM, Heiberg A, Roos BO, Levy B (1980) Physica Scripta 21:323

    Google Scholar 

  65. Staemmler V (1977) Theor Chim Acta 45:89

    Google Scholar 

  66. Stewart RJ (1970) J Chem Phys 52:431

    Google Scholar 

  67. Stierman TJ, Johnson RP (1985) J Am Chem Soc 107

  68. Valtazanos P, Elbert ST, Ruedenberg K (1986) J Am Chem Soc 108:3147–3149

    Google Scholar 

  69. Valtazanos P, Ruedenberg K (1985) Theor Chim Acta 69:281–307

    Google Scholar 

  70. Valtazanos P, Ruedenberg K (1991) Theor Chim Acta 78:307 (Paper 4)

    Google Scholar 

  71. Walbrick JM, Wilson JW Jr, Jones WM (1968) J Am Chem Soc 90:2895

    Google Scholar 

  72. Wilson EB, Decius JC, Cross PC (1955) Molecular vibrations. McGraw-Hill, New York

    Google Scholar 

  73. Xantheas S, Ruedenberg K (1991) Theor Chim Acta 78:365 (Paper 3)

    Google Scholar 

  74. Xantheas S, Valtazanos P, Ruedenberg K (1991) Theor Chim Acta 78:327 (Paper 2)

    Google Scholar 

  75. Yaffe LG, Goddard WA (1976) Phys Rev A 13:1682

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Operated for the U.S. Department of Energy by Iowa State University under Contract No. 7405-ENG-82. This work was supported by the office of Basic Energy Sciences

Rights and permissions

Reprints and permissions

About this article

Cite this article

Valtazanos, P., Elbert, S.T., Xantheas, S. et al. The ring opening of cyclopropylidene to allene: global features of the reaction surface. Theoret. Chim. Acta 78, 287–326 (1991). https://doi.org/10.1007/BF01112344

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01112344

Key words

Navigation