Skip to main content
Log in

Strength of poly(methyl methacrylate) with indentation flaws

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Controlled flaws were introduced into poly(methyl methacrylate) samples in the presence of liquid acetone using a Vickers indenter over a range of indentation loads from 100 to 1400 N. Due to the large plastic zone underneath the indenter, the radial crack formed by indentation consisted of two halves, known as Palmqvist cracks, instead of a single semicircular crack. The strengths of the samples were measured in air either immediately following indentation or after a stress-relief anneal. The strength of the as-indented samples was about 6% less than that of the annealed samples; however, the dependence of strength on indentation load was similar for both sets of samples. These results were interpreted in terms of an indentation fracture mechanics model. The analysis is consistent with poly(methyl methacrylate) having a rising fracture toughness with increasing crack size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. R. Anstis, P. Chantikul, B. R. Lawn andD. B. Marshall,J. Amer. Ceram. Soc. 64 (9) (1981) 533.

    Google Scholar 

  2. P. Chantikul, G. R. Anstis, B. R. Lawn andD. B. Marshall,ibid. 64 (9) (1981) 539.

    Google Scholar 

  3. D. B. Marshall, ASTM STP 844 (American Society for Testing and Materials, Philadelphia, 1984) pp. 3–21.

    Google Scholar 

  4. R. F. Cook andB. R. Lawn,ibid. pp. 22–42.

    Google Scholar 

  5. R. F. Cook, B. R. Lawn andG. R. Anstis,J. Amer. Ceram. Soc. 16 (10) (1981) 2846.

    Google Scholar 

  6. Idem, ibid. 14 (4) (1982) 1108.

    Google Scholar 

  7. B. R. Lawn, K. Jakus andA. C. Gonzales,ibid. 68 (1) (1985) 25.

    Google Scholar 

  8. R. F. Cook, B. R. Lawn, T. P. Dabbs andP. Chantikul,ibid. 64 (9) (1981) C121.

    Google Scholar 

  9. J. E. Ritter, P. Strzepa andK. Jakus,Phys. Chem. Glass 25 (1986) 159.

    Google Scholar 

  10. D. B. Marshall andB. R. Lawn, ASTM STP 889 (American Society for Testing and Materials, Philadelphia, 1986) pp. 24–46.

    Google Scholar 

  11. K. Jakus, J. E. Ritter Jr andC. A. Larsen,Polym. Eng. Sci. 21 (1981) 854.

    Google Scholar 

  12. D. Broek, “Elementary Engineering Fracture Mechanics” (Nijhoff, Netherlands, 1983) pp. 170–196.

    Google Scholar 

  13. B. R. Lawn, T. P. Dabbs andC. J. Fairbanks,J. Mater. Sci. 18 (1983) 2785.

    Google Scholar 

  14. T. B. Dabbs, C. J. Fairbanks andB. R. Lawn, ASTM STP 844 (American Society for Testing and Materials, 1984) pp. 142–153.

  15. J. T. Hagan,J. Mater. Sci. 14 (1979) 2975.

    Google Scholar 

  16. Idem, ibid. 15 (1980) 1417.

    Google Scholar 

  17. S. Palmqvist,Jernkontorets Ann. 141 (1957) 300.

    Google Scholar 

  18. C. T. Peters,J. Mater. Sci. 14 (1979) 1619.

    Google Scholar 

  19. D. K. Shetty, I. G. Wright, P. N. Mincer andA. H. Clauer,ibid. 20 (1985) 1873.

    Google Scholar 

  20. R. Hill, “The Mathematical Theory of Plasticity”, (Clarendon, Oxford, 1983) pp. 97–114.

    Google Scholar 

  21. D. M. Marsh,Proc. R. Soc. A279 (1964) 420.

    Google Scholar 

  22. W. Hirst andM. G. J. House,ibid. A311 (1969) 429.

    Google Scholar 

  23. S. I. Israel, E. L. Thomas andW. W. Gerberich,J. Mater. Sci. 14 (1979) 2128.

    Google Scholar 

  24. B. R. Lawn, A. G. Evans andD. B. Marshall,J. Amer. Ceram. Soc. 63 (1980) 574.

    Google Scholar 

  25. R. F. Krause Jr,ibid. in press.

    Google Scholar 

  26. R. Knehens andR. Steinbrech,J. Mater. Sci. Lett. 1 (1982) 327.

    Google Scholar 

  27. D. B. Marshall andJ. E. Ritter,Bull. Amer. Ceram. Soc. 66 (2) (1987) 309.

    Google Scholar 

  28. R. F. Krause Jr andE. R. Fuller Jr, in “Chevronnotched Specimens: Testing and Stress Analysis”, edited by J. H. Underwood, S. W. Freiman and F. I. Baratta, (American Society for Testing and Materials, Philadelphia, 1984) pp. 309–323.

    Google Scholar 

  29. G. P. Morgan andI. M. Ward,Polymer 18 (1977) 87.

    Google Scholar 

  30. H. R. Brown andI. M. Ward,ibid. 14 (1973) 469.

    Google Scholar 

  31. W. Doll,Adv. Polym. Sci. 52/53 (1983) 105.

    Google Scholar 

  32. W. Doll, L. Konczoll andM. G. Schinker,Polymer 24 (1983) 1213.

    Google Scholar 

  33. G. S. Glaesemann, K. Jakus andJ. E. Ritter Jr,J. Amer. Ceram. Soc. in press.

  34. H. Bevis andD. Hull,J. Mater. Sci. 15 (1970) 983.

    Google Scholar 

  35. M. J. Doyle, A. Maranci, E. Orowan andS. T. Stork,Proc. R. Soc. A329, (1972) 137.

    Google Scholar 

  36. J. C. Newman andI. S. Raju,Eng. Frac. Mech. 15 (1–2) (1981) 185.

    Google Scholar 

  37. J. E. Ritter Jr, F. M. Mahoney andK. Jakus,Frac. Mech. Ceram. 8 (1986) 213.

    Google Scholar 

  38. S. I. Israel, E. L. Thomas andW. W. Gerberich,J. Mater. Sci. 15 (1980) 2389.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ritter, J.E., Lin, M.R. & Lardner, T.J. Strength of poly(methyl methacrylate) with indentation flaws. J Mater Sci 23, 2370–2378 (1988). https://doi.org/10.1007/BF01111890

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01111890

Keywords

Navigation