Skip to main content
Log in

On Krull's Separation Lemma

  • Published:
Order Aims and scope Submit manuscript

Abstract

We show that Krull's Separation Lemma for arbitrary rings and a certain lattice-theoretical generalization of it are equivalent to the classical Prime Ideal Theorem for Boolean algebras. As an application, we derive the intersection theorem for Baer radicals from choice principles weaker than the Axiom of Choice. A central tool for our considerations are Scott-openm-filters in quantales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Banaschewski (1980) The duality of distributive continuous lattices,Canad. J. Math. 32, 385–394.

    Google Scholar 

  2. B. Banaschewski (1985) Prime elements from prime ideals,Order 2, 211–213.

    Google Scholar 

  3. B. Banaschewski and R. Harting (1985) Lattice aspects of radical ideals and choice principles,Proc. London Math. Soc. 50, 385–404.

    Google Scholar 

  4. A. Blass (1987) Prime ideals yield almost maximal ideals,Fund. Math. 127, 57–66.

    Google Scholar 

  5. M. Erné (1986) Distributors and Wallmanufacture, Preprint No. 204, Mathematisches Institut, Universität Hannover.

  6. M. Erné (1986) A strong version of the prime element theorem, Preprint, Mathematisches Institut, Universität Hannover.

  7. M. Erné (1990) Distributors and Wallmanufacture,J. Pure and Appl. Algebra 68, 109–125.

    Google Scholar 

  8. J. D. Halpern (1964) Independence of the axiom of choice from the Boolean prime ideal theorem,Fund. Math. 55, 57–66.

    Google Scholar 

  9. W. Hodges (1979) Krull implies Zorn,J. London Math. Soc. 19, 285–287.

    Google Scholar 

  10. K. H. Hofmann and J. D. Lawson (1978) The spectral theory of distributive continuous lattices,Trans. Amer. Math. Soc. 246, 285–310.

    Google Scholar 

  11. P. T. Johnstone (1982)Stone Spaces, Cambridge Studies in Advanced Math. No. 3, Cambridge University Press.

  12. K. Keimel (1972) A unified theory of minimal prime ideals,Acta Math. Acad. Sci. Hung. 23, 51–69.

    Google Scholar 

  13. S. B. Niefield (1992) Localic and Boolean quotients of a quantale. Preprint.

  14. S. B. Niefield and K. I. Rosenthal (1988) Constructing locales from quantales,Math. Proc. Cam. Phil. Soc. 104, 215–234.

    Google Scholar 

  15. J. Paseka (1989) A note on the prime ideal theorem,Acta Univ. Carolinae Math. & Phys. 30, 131–136.

    Google Scholar 

  16. D. Pincus (1977) Adding dependent choice to the prime ideal theorem,Logic Colloquium 76,Studies in Logic and the Foundations of Mathematics 96, North-Holland, 547–565.

    Google Scholar 

  17. K. I. Rosenthal (1990)Quantales and Their Applications, Pitman Research Notes in Mathematics Series234, Longman Scientific & Technical, Essex.

    Google Scholar 

  18. J. Rosický (1987) Multiplicative lattices and frames,Acta Math. Hung. 49, 391–395.

    Google Scholar 

  19. D. S. Scott (1957) Prime ideal theorems for rings, lattices, and Boolean algebras,Bull. Amer. Math. Soc. 60, 390.

    Google Scholar 

  20. S.-H. Sun (1992) On separation lemmas,J. Pure and Appl. Algebra 78, 301–310.

    Google Scholar 

  21. S. Vickers (1988)Topology via Logic, Cambridge University Press.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by K. Keimel

Rights and permissions

Reprints and permissions

About this article

Cite this article

Banaschewski, B., Erné, M. On Krull's Separation Lemma. Order 10, 253–260 (1993). https://doi.org/10.1007/BF01110546

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01110546

Mathematics Subject Classifications (1991)

Key words

Navigation