Skip to main content
Log in

Effects of equisetin on rat liver mitochondria: Evidence for inhibition of substrate anion carriers of the inner membrane

  • Original Articles
  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

The effect of equisetin, an antibiotic produced byFusarium equiseti, has been studied on mitochondrial functions (respiration, ATPase, ion transport). Equisetin inhibits the DNP-stimulated ATPase activity of rat liver mitochondria and mitoplasts in a concentration-dependent manner; 50% inhibition is caused by about 8 nmol equisetin/mg protein. The antibiotic is without effect either on the ATPase activity of submitochondrial particles or on the purified F1-ATPase. It inhibits both the ADP- or DNP-activated oxygen uptake by mitochondria in the presence of glutamate + malate or succinate as substrates, but only the ADP-stimulated respiration is inhibited if the electron donors are TMPD + ascorbate. It does not affect the NADH or succinate oxidation of submitochondrial particles. Equisetin inhibits in a concentration-dependent manner the active Ca2+-uptake of mitochondria energized both by ATP or succinate without affecting the Ca2+-uniporter itself. The antibiotic inhibits the ATP-uptake by mitochondria (50% inhibition at about 8 nmol equisetin/mg protein) and the Pi and dicarboxylate carrier. It does not lower the membrane potential at least up to 200 nmol/mg protein concentration. The data presented in this paper indicate that equisetin specifically inhibits the substrate anion carriers of the mitochondrial inner membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

EGTA:

ethyleneglycol bis/-aminoethylether/-N, N-tetraacetic acid

DNP:

2, 4-dinitrophenol

TMPD:

N,N,N′,N′,tetramethyl-p-phenylenediamine

CCP:

carbonylcyanide-m-chlorophenyl hydrazone

TPP:

tetraphenyl-phosphonium

Hepes:

/4,(2-hydroxyethyl)-1-piperazine-ethanesulfonic acid/

References

  • Aquila, H., Link, T. A., and Klingenberg, M. (1987).FEBS Lett. 212 1–9.

    Google Scholar 

  • Beyer, K., and Klingenber, M. (1985).Biochemistry 24 3821–3826.

    PubMed  Google Scholar 

  • Burmeister, H. R., Bennett, G. A., Vesonder, R. F., and Hesseltine, C. W. (1974).Antimicrob. Agents Chemother. 5 634–639.

    Google Scholar 

  • Gregg, C. T. (1963).Biochim. Biophys. Acta 74 573–587.

    PubMed  Google Scholar 

  • Kamo, N., Muratsugu, M., Hougoh, R., and Kobatake, Y. (1974).J. Membr. Biol. 49 105–121.

    Google Scholar 

  • König, T., and Kapus, A. (1990). Abstr. 20th FEBS Meeting, p. 59. No. 206

  • König, T., Kocsis, B., Meszáros, L., Nahm, K., Zoltán, S., and Horváth, I. (1977).Biochim. Biophys. Acta 462 380–389.

    PubMed  Google Scholar 

  • König, T., Stipani, I., Horváth, I., and Palmieri, F. (1982).J. Bioenerg. Biomembr. 14 297–305.

    PubMed  Google Scholar 

  • König, T., Ormos, P., and Horváth, I. (1986).EBEC Short Reports, Vol. 4, p. 258.

    Google Scholar 

  • Krämer, R., and Palmieri, F. (1989).Biochim. Biophys. Acta 374, 1–23.

    Google Scholar 

  • Ligeti, E., and Fonyó, A. (1984).Eur. J. Biochem. 139 279–285.

    PubMed  Google Scholar 

  • Ligeti, E., Brandolin, G., Dupont, Y., and Vignais, P. V. (1985).Biochemistry 24 4423–4428.

    PubMed  Google Scholar 

  • Müller, M., Cheneval, D., and Carafoli, E. (1984).Eur. J. Biochem. 140 447–452.

    PubMed  Google Scholar 

  • Nicholls, D. G., and Akerman, K. E. O. (1982).Biochim. Biophys. Acta 683 57–88.

    PubMed  Google Scholar 

  • Nyrén, P., and Strid, A. (1989).Arch. Biochem. Biophys. 268 659–668.

    PubMed  Google Scholar 

  • Palmieri, F., Bisaccia, F., Capobianco, L., Iacobazzi, V., Indiveri, C., and Zara, V. (1990).Biochim. Biophys. Acta 1018 147–150.

    PubMed  Google Scholar 

  • Paradies, G., and Ruggiero, F. M. (1988).Biochem. Biophys. Res. Commun. 156 1302–1307.

    PubMed  Google Scholar 

  • Paradies, G., and Ruggiero, F. M. (1991).Arch. Biochem. Biophys. 284 332–337.

    PubMed  Google Scholar 

  • Paradies, G., Ruggiero, F. M., and Dinoi, P. (1991).Arch. Biophys. Acta 1070 180–186.

    Google Scholar 

  • Schacterie, G. R., and Pollak, R. C. (1973).Anal. Biochem. 51 654–655.

    PubMed  Google Scholar 

  • Schnaitman, C., and Greenawalt, J. W. (1968).J. Cell Biol. 38 158–175.

    PubMed  Google Scholar 

  • Schnaitman, C. E., Erwin, V. G., and Greenawalt, J. W. (1967).J. Cell Biol. 32 719–735.

    PubMed  Google Scholar 

  • Vesonder, R. F., Tjarks, L. W., Rohwedder, W. K., Burmeister, H. R. and Laugal, J. A. (1979).J. Antibiotics 32 759–761.

    Google Scholar 

  • Wohlrab, H. (1986).Biochim. Biophys. Acta 853 115–134.

    PubMed  Google Scholar 

  • Wojtczak, L., and Zaluska, H. (1967).Biochem. Biophys. Res. Commun. 28 76–81.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

König, T., Kapus, A. & Sarkadi, B. Effects of equisetin on rat liver mitochondria: Evidence for inhibition of substrate anion carriers of the inner membrane. J Bioenerg Biomembr 25, 537–545 (1993). https://doi.org/10.1007/BF01108410

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01108410

Key words

Navigation