Skip to main content
Log in

Deformation mechanisms in yttria-stabilized zirconia

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Yielding behaviour and deformation modes are characterized for single-crystal and polycrystalline yttria-stabilized ZrO2 tested in compression from 23 to 800° C. The plastic flow of single-crystal specimens is shown to be orientation and temperature dependent, and is interpreted in terms of dislocation activity, transformation plasticity, and ferroelastic domain switching. Polycrystalline material deforms at room temperature by transformation plasticity, and at intermediate temperatures (∼800° C) by forming unstable shear bands, which flow via grain-boundary sliding and cavitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. G. Evans andR. M. Cannon,Acta Metall. 34 (1986) 761.

    Google Scholar 

  2. E. P. Butler,Mater. Sci. Technol. 1 (1985) 417.

    Google Scholar 

  3. I-W. Chen andP. E. Reyes-Morel,J. Amer. Ceram. Soc. 69 (1986) 181.

    Google Scholar 

  4. M. V. Swain,Acta Metall. 33 (1985) 2083.

    Google Scholar 

  5. R. Chaim, M. Ruhle andA. H. Heuer,J. Amer. Ceram. Soc. 68 (1985) 427.

    Google Scholar 

  6. A. V. Virkar andR. L. K. Matsumoto,ibid. 69 (1986) C-224.

    Google Scholar 

  7. M. Ruhle, N. Claussen andA. H. Heuer, in “Advances in Ceramics, Vol. 12, Science and Technology of Zirconia II”, edited by N. Claussen, M. Ruhle and A. H. Heuer (American Ceramic Society, Columbus, Ohio, 1984) p. 352.

    Google Scholar 

  8. G. Wahlberg, L. K. L. Falk, G. L. Dunlop andK.-O. Axelsson,J. Mater. Sci. Lett. 4 (1985) 1353.

    Google Scholar 

  9. J. Lankford,J. Mater. Sci. 20 (1985) 53.

    Google Scholar 

  10. V. Lanteri, A. H. Heuer andT. E. Mitchell, in “Advances in Ceramics, Vol. 12, Science and Technology of Zirconia II”, edited by N. Claussen, M. Ruhle and A. H. Heuer (American Ceramic Society, Columbus, Ohio, 1984) p. 118.

    Google Scholar 

  11. A. Dominguez-Rodriguez, K. P. D. Lagerlof andA. H. Heuer,J. Amer. Ceram. Soc. 69 (1986) 281.

    Google Scholar 

  12. A. Dominguez-Rodriguez, V. Lanteri andA. H. Heuer,ibid. 69 (1986) 285.

    Google Scholar 

  13. J. Lankford,J. Mater. Sci. 21 (1986) 1981.

    Google Scholar 

  14. R. P. Ingel, PhD thesis, The Catholic University of America (1982).

  15. L. J. Schioler, R. N. Katz, A. C. Gonzalez andB. R. Lawn,Ceram. Bull. 64 (1985) 326.

    Google Scholar 

  16. M. L. Mecartney, W. T. Donlon andA. H. Heuer,J. Mater. Sci. 15 (1980) 1063.

    Google Scholar 

  17. T. Coyle, personal communication (1985).

  18. A. V. Virkar andR. L. K. Matsumoto, unpublished research (1986).

  19. C. A. Andersson, J. Greggi andT. K. Gupta, in “Advances in Ceramics, Vol. 12, Science and Technology of Zirconia II”, edited by N. Claussen, M. Ruhle and A. H. Heuer (American Ceramic Society, Columbus, Ohio, 1984) p. 78.

    Google Scholar 

  20. B. J. Dalgleish, E. B. Slamovich andA. G. Evans,J. Amer. Ceram. Soc. 68 (1985) 575.

    Google Scholar 

  21. B. J. Dalgleish andA. G. Evans,ibid. 68 (1985) 44.

    Google Scholar 

  22. J. W. Rudnicki andJ. R. Rice,J. Mech. Phys. Solids 23 (1975) 371.

    Google Scholar 

  23. F. Wakai, S. Sakaguchi andY. Matsuno,Adv. Ceram. Mats. 1 (1986) 259.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lankford, J., Page, R.A. & Rabenberg, L. Deformation mechanisms in yttria-stabilized zirconia. J Mater Sci 23, 4144–4156 (1988). https://doi.org/10.1007/BF01106850

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01106850

Keywords

Navigation