Skip to main content
Log in

Analysis of static and dynamic fatigue of polycrystalline alumina

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The fatigue failure of polycrystalline alumina in a moist air environment at 30° C has been analysed in terms of a modified Weibull distribution function using fracture mechanics theory. The good correlation obtained between the fatigue test data and fracture mechanics theory indicates that fatigue is controlled by the slow crack growth of pre-existing flaws. The distribution of these pre-existing flaws can be represented by the modified Weibull distribution which provides an upper and a lower limit strength and thus is more realistic for the physical phenomena it represents. Comparison of proof-test predictions with experiment indicate that the proof test can be effective in eliminating weak samples from the population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. G. Evans andS. M. Wiederhorn,Int. J. Fract. 10 (1974) 379.

    Google Scholar 

  2. J. E. Ritter Jr, in “Fracture Mechanics of Ceramics”, Vol. 4, edited by R. C. Bradt, D. P. H. Hasselman and F. F. Lange (Plenum, New York, 1978) p. 667.

    Google Scholar 

  3. J. E. Ritter Jr andJ. A. Meisel,J. Amer. Ceram. Soc. 59 (1976) 478.

    Google Scholar 

  4. R. W. Davidge, J. R. McLaren andG. Tappin,J. Mater. Sci. 8 (1973) 1699.

    Google Scholar 

  5. W. Weibull,J. Appl. Mech. 18 (1951) 293.

    Google Scholar 

  6. G. K. Bansel andW. H. Duckworth, in “Fracture Mechanics of Ceramics”, Vol. 3, edited by R. C. Bradt, D. P. H. Hasselman and F. F. Lange (Plenum, New York, 1978) p. 201.

    Google Scholar 

  7. J. E. Ritter Jr andJ. N. Humenik,J. Mater. Sci. 14 (1979) 626.

    Google Scholar 

  8. K. Goda andH. Fukunaga,ibid. 21 (1986) 4475.

    Google Scholar 

  9. P. Martineau, M. Lahaye, R. Pailler, R. Naslain, M. Couzi andF. Cruege,ibid. 19 (1984) 2731.

    Google Scholar 

  10. T. E. Easler, R. C. Bradt andR. E. Tressler,J. Amer. Ceram. Soc. 64 (1981) 731.

    Google Scholar 

  11. K. K. Phani,ibid. 70 (1987) c182.

    Google Scholar 

  12. Idem, J. Appl. Phys.,62 (1987) 719.

    Google Scholar 

  13. A. G. Evans,Int. J. Fract. 10 (1974) 251.

    Google Scholar 

  14. R. D. Maurer,Appl. Phys. Lett. 27 (1975) 220.

    Google Scholar 

  15. D. Kalish, B. K. Tariyal andR. O. Pickwick,Amer. Ceram. Soc. Bull. 56 (1977) 451.

    Google Scholar 

  16. W. E. Snowden, in “Fracture Mechanics of Ceramics”, Vol. 3, edited by R. C. Bradt, D. P. H. Hasselman and F. F. Lange (Plenum, New York, 1978) p. 143.

    Google Scholar 

  17. W. D. Scott andA. Gaddipatti,ibid., p. 125.

    Google Scholar 

  18. B. K. Tariyal andD. Kalish,Mater. Sci. Engng 27 (1977) 69.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Phani, K.K. Analysis of static and dynamic fatigue of polycrystalline alumina. J Mater Sci 23, 3864–3868 (1988). https://doi.org/10.1007/BF01106805

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01106805

Keywords

Navigation