Skip to main content
Log in

Crack formation beneath sliding spherical punches

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Using Hamilton's equations (1983) for computing the stress trajectories corresponding to the crack path, and the method proposed by Mouginot and Maugis (1985), based on Lawn's analysis (1967) it is possible to express the strain energy release rateG, for various crack initiation radii and various friction coefficients. The initial radius of the crack can then be determined by maximizingG, and the critical load required to initiate it can be computed by application of the Griffith criterion, as a function of the following parameters: the elastic characteristics of the materials, the punch radius, the initial flaw size and the friction coefficient. The analysis proposed by Gilroy and Hirst is shown to be the lower bound of this theory. The theoretical results are compared with published experimental results, and are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. C. Frank andB. R. Lawn,Proc. R. Soc. A299 (1967) 291.

    Google Scholar 

  2. A. A. Griffith,Phil. Trans. A221 (1920) 163.

    Google Scholar 

  3. H. Hertz,J. Reine. Angew. Maths. 92 (1881) 156.

    Google Scholar 

  4. M. T. Huber,Ann. Physik. 14 (1904) 153.

    Google Scholar 

  5. T. R. Wilshaw,J. Phys. D. Appl Phys. 4 (1971) 1567.

    Google Scholar 

  6. R. Warren,Acta Metall. 26 (1978) 1759.

    Google Scholar 

  7. R. Mouginot andD. Maugis,J. Mater. Sci. 20 (1985) 4354.

    Google Scholar 

  8. F. Auerbach,Ann. Phys. Chem. 43 (1891) 61.

    Google Scholar 

  9. B. R. Lawn,Proc. R. Soc. A299 (1967) 307.

    Google Scholar 

  10. Y. Enomoto,J. Mater. Sci. 16 (1981) 3365.

    Google Scholar 

  11. D. R. Gilroy andW. Hirst,J. Phys. D. Appl. Phys. 2 (1969) 1784.

    Google Scholar 

  12. B. Hamilton andH. Rawson,ibid. B (1970) L40.

  13. B. R. Lawn, S. M. Wiederhorn andD. E. Roberts,J. Mater. Sci. 19 (1984) 2561.

    Google Scholar 

  14. M. V. Swain,Proc. R. Soc. A366 (1979) 575.

    Google Scholar 

  15. G. M. Hamilton andL. E. Goodman,J. Appl. Mech. 33 (1966) 371.

    Google Scholar 

  16. G. M. Hamilton,Proc. Inst. Mech. Ing. 197c (1983) 53.

    Google Scholar 

  17. S. Chiang andA. Evans,J. Amer. Ceram. Soc. 66 (1) (1983)A 491.

    Google Scholar 

  18. B. D. Powell andD. Tabor,J. Phys. D. Appl Phys. 3 (1970) 783.

    Google Scholar 

  19. M. Barquins, D. Maugis andR. Courtel,C. R. Acad Sc. Paris 1276 (1973) A491.

    Google Scholar 

  20. S. Way,J. Appl. Mech. 7 (1940) 147.

    Google Scholar 

  21. R. D. Mindlin,Physics 7 (1936) 195.

    Google Scholar 

  22. R. Mouginot, Representations de l'etat de contrainte sous contacts ponctuel et hertzien glissants. ETCA rapport interne (1986) to be published.

  23. K. L. Johnson, J. J. O'Connor andA. C. Woodward,Proc. R. Soc. A334 (1973) 95.

    Google Scholar 

  24. D. Maugis,J. Mater. Sci. 20 (1985) 3041.

    Google Scholar 

  25. O. O. Adewoye andT. F. Page,Wear 70 (1981) 37.

    Google Scholar 

  26. F. B. Langitan andB. R. Lawn,J. Phys. D. Appl. Phys. 40 (1969) 4009.

    Google Scholar 

  27. B. R. Lawn,J. Appl. Phys. 39 (1968) 4828.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mouginot, R. Crack formation beneath sliding spherical punches. J Mater Sci 22, 989–1000 (1987). https://doi.org/10.1007/BF01103541

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01103541

Keywords

Navigation