Skip to main content
Log in

Distribution of protein tracers in the nervous system of the crayfish (Astacus astacus L.) following systemic and local application

  • Published:
Journal of Neurocytology

Summary

A study was made on the penetration and cellular uptake of two protein tracers, albumin labelled with Evans blue (EBA) and horseradish peroxidase (HP), in the nervous system of the crayfish following systemic and local administration. Followingsystemic injection, EBA did not diffuse freely from the cerebral vessels into the brain parenchyma. When the tracers werelocally applied on the surface of the ventral nerve cord their penetration into the nervous parenchyma was to some extent restricted by the nerve sheath. However, unlike the perineurium of vertebrate peripheral nerves, which acts as an efficient diffusion barrier, the crayfish nerve sheath allowed the diffusion of small amounts of tracers into the ganglia. The tracers could more readily penetrate into peripheral nerves in the vicinity of ganglia. Inside the ganglion the tracers spread in extracellular spaces, between glial cell membranes and reached the neuronal surfaces. The proteins were taken up by pinocytosis in glial cells, and also in axons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbott, N. J. (1970) Absence of blood-brain barrier in a Crustacean,Carcinus maenas L.Nature (London) 225, 291–3.

    Google Scholar 

  • Abbott, N. J. (1971a) The organization of the cerebral ganglion in the shore crab,Carcinus maenas. I. Morphology.Zeitschrift für Zellforschung und mikroskopische Anatomie 120, 386–400.

    Google Scholar 

  • Abbott, N. J. (1971b) The organization of the cerebral ganglion in the shore crab,Carcinus maenas. II. The relation of intracerebral blood vessels to other brain elements.Zeitschrift für Zellforschung und miskroskopische Anatomie 120, 401–19.

    Google Scholar 

  • Andersson, E., Edström, A. andJarlstedt, J. (1970). Properties of RNA from giant axoms of the crayfish.Acta Physiologica Scandinavica 78, 491–502.

    PubMed  Google Scholar 

  • Brightman, M., Klatzo, I., Olsson, Y. andReese, T. S. (1970) The blood-brain barrier to proteins under normal and pathological conditions.Journal of the neurological Sciences 10, 215–39.

    PubMed  Google Scholar 

  • Brightman, M., Reese, T. S., Olsson, T. andKlatzo, I. (1971) Morphological aspects of the blood-brain barrier to peroxidase in elasmobranches.Progress in Neuropathology 1, 146–61.

    Google Scholar 

  • De Lorenzo, A. J. D., Brzin, M. andDettbarn, W. D. (1968) Fine structure and organization of nerve fibres and giant axons inHomarus americanus.Journal of Ultrastructure Research 24, 367–84.

    PubMed  Google Scholar 

  • Edström, A. (1969) RNA and protein synthesis in Mauthner nerve fibre components of fish.Symposia of the International Society for Cell Biology 8, 51–72.

    Google Scholar 

  • Geren, B. B. andSchmitt, F. O. (1954) The structure of the Schwann cell and its relation to the axon in certain invertebrate nerve fibres.Proceedings of the National Academy of Sciences of the United States of America 40, 863–70.

    Google Scholar 

  • Graham, R. C. andKarnovsky, M. J. (1966) The early stages of absorption of injected horseradish peroxidase in the proximal tubule of mouse kidney: ultrastructural cytochemistry by a new technique.Journal of Histochemistry and Cytochemistry 14, 291–99.

    PubMed  Google Scholar 

  • Gray, E. G. (1969) Electron microscopy of the glia-vascular organization of the brain of octopus.Philosophical Transactions of the Royal Society B. 255, 13–32.

    Google Scholar 

  • Guth, L., andWindle, W. F. (1970) The enigma of central nervous regeneration.Experimental Neurology Supplement 5, 1–43.

    Google Scholar 

  • Hama, K. (1966) The fine structure of the Schwann cell sheath of the nerve fibre in the shrimp (Penaeus japonicus)Journal of Cell Biology 31, 624–32.

    PubMed  Google Scholar 

  • Heuser, J. E. andDoggenweiler, C. F. (1966) The fine structural organization of nerve fibres, sheaths, and glial cells in the prawn,Palaemonetes vulgaris.Journal of Cell Biology 30, 381–403.

    PubMed  Google Scholar 

  • Holmgren, E. (1900) Weitere Mitteilungen über die “Saftkanälchen” der Nervenzellen.Anatomischer Anzeiger 18, 290–6.

    Google Scholar 

  • Holtzman, E. andPeterson, E. (1969) Uptake of protein by mammalian neurons.Journal of Cell Biology 40, 863–9.

    PubMed  Google Scholar 

  • Holtzman, E., Freeman, A. R. andKashner, L. A. (1970) A cytochemical and electron microscope study of channels in the Schwann cells surrounding lobster giant axons.Journal of Cell Biology 44, 438–45.

    PubMed  Google Scholar 

  • Horridge, G. A. andChapman, R. A. (1964) Sheaths of the motor axons of the crabCarcinus.Quarterly Journal of Microscopical Science 105, 175–81.

    Google Scholar 

  • Hoy, R. M., Bittner, G. D. andKennedy, D. (1967) Regeneration in crustacean motoneurons: evidence for axonal fusion.Science 156, 251–2.

    PubMed  Google Scholar 

  • Hydén, H. (1967) Dynamic aspects of the neuron-glia relationship. InThe Neuron (edited byHydén, H.), pp. 179–219. Amsterdam: Elsevier.

    Google Scholar 

  • Karnovsky, M. J. (1965) A formaldehyde-glutaraldehyde fixative of high osmolarity for use in electron microscopy.Journal of Cell Biology 27, 137A.

    Google Scholar 

  • Klemm, H. (1970) Das Perineurium als Diffusionsbarriere gegenüber Peroxydase bei epi- und endoneuraler Applikation.Zeitschrift für Zellforschung und mikroskopische Anatomie 108, 431–45.

    Google Scholar 

  • Kristensson, K., (1970) Transport of fluorescent protein tracer in peripheral nerves.Acta neuropathologica (Berlin) 16, 293–300.

    Google Scholar 

  • Kristensson, K. andOlsson, Y. (1971a) Retrograde axonal transport of protein.Brain Research 29, 363–5.

    PubMed  Google Scholar 

  • Kristensson, K. andOlsson, Y. (1971b) Uptake and retrograde axonal transport of peroxidase in hypoglossal neurones. Electron microscopical localization in the neuronal perikaryon.Acta neuropathologica (Berlin) 19, 1–9.

    Google Scholar 

  • Kristensson, K., Olsson, Y. andSjöstrand, J. (1971) Axonal uptake and retrograde transport of exogenous proteins in the hypoglossal nerve.Brian Research 32, 399–406.

    Google Scholar 

  • Malzone, W. F., Collins, G. H. andCowden, R. R. (1966) Neuroglial relationships in the thoracic ganglion of the fiddler crab,Uca.Journal of Comparative Neurology 127, 511–30.

    PubMed  Google Scholar 

  • Olsson, Y. andReese, T. S. (1969) Inaccessibility of the endoneurium of mouse sciatic nerve to exogenous proteins.Anatomical Record 163, 318–19 (Abstract).

    Google Scholar 

  • Olsson, Y. andReese, T. S. (1971) Permeability of vasa nervorum and perineurium in mouse sciatic nerve studies by fluorescence and electron microscopy.Journal of Neuropathology and experimental Neurology 30, 105–19.

    PubMed  Google Scholar 

  • Reese, T. S. andKarnovsky, M. J. (1967) Fine structural localization of a blood-brain barrier to exogenous peroxidase.Journal of Cell Biology 34, 207–17.

    PubMed  Google Scholar 

  • Richardson, K. C., Janett, L. andFinke, E. H. (1960) Embedding in epoxy resin for ultrathin sectioning in electron microscopy.Stain Technology 35, 313–323.

    PubMed  Google Scholar 

  • Rosenbluth, J. andWissig, S. L. (1964) The distribution of exogenous ferritin in toad spinal ganglia and the mechanism of its uptake in neurons.Journal of Cell Biology 23, 307–25.

    PubMed  Google Scholar 

  • Sandeman, D. C. (1967) The vascular circulation in the brain, optic lobes and thoracic ganglia of the crabCarcinus.Proceedings of the Royal Society London Series B 168, 82–90.

    Google Scholar 

  • Singer, M. (1968) Penetration of labelled amino acids into the peripheral nerve fibre from surrounding body fluids. InGrowth of the nervous system (edited byWolstenholme, E. E. W. andO'connor, M.), pp. 200–19. London: Churchill.

    Google Scholar 

  • Singer, M. andGreen, M. R. (1968) Autoradiographic studies of uridine incorporation in peripheral nerve of the newt,Triturus, Journal of Morphology 124, 321–44.

    PubMed  Google Scholar 

  • Steinwall, O. andKlatzo, I. (1965) Double tracer methods in studies on blood-brain barrier dysfunction and brain edema.Acta neurologica scandinavica 41, 591–5.

    Google Scholar 

  • Treherne, J. E. andMoreton, R. B. (1970) Environment and function of invertebrate nerve cells.International Review of Cytology 28, 45–88.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kristensson, K., Strömberg, E., Elofsson, R. et al. Distribution of protein tracers in the nervous system of the crayfish (Astacus astacus L.) following systemic and local application. J Neurocytol 1, 35–47 (1972). https://doi.org/10.1007/BF01098644

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01098644

Keywords

Navigation