Skip to main content
Log in

Synergism in molybdenum iron sulphur cluster compounds. Synthetic, structural, magnetic, cyclic voltammetric evidence and the reaction of dicubane clusters containing [MoFe3S4] unit

  • Full Papers
  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Summary

Dicubane cluster compounds (Et4N)4[Mo2Fe7S8(SR)12] (2A) (R=Ph,a;o-tolyl,b;m-tolyl,c;p-tolyl,d) were made by reaction of (Et4N)2[Fe4(SR)10] (1) with (Et4N)2MoS4 in MeCN at room temperature. The structure,1Hn.m.r.,57Fe Mössbauer spectrum, magnetic susceptibility and cyclic voltammogram are described. (Et4N)3[Mo2Fe6S8Cl6(SR)3] (3) (R=Ph,a;m-tolyl,b) was obtained from the reaction of (2Aa) or (2Ac) with acetyl chloride in MeCN. This is the first time that compound of structural type (2) is transformed into that of structural type (3) by chemical conversion. Compound (2Aa) crystallizes in the triclinic space group P\(\bar 1\) with Z=1 and unit cell dimensionsa=12.775(4),b=13.076(3), andc=20.576(4) Å; the structure was refined to R=7.7% using 4031 unique data with I>3ϖ(Io). Compound (2Ac) 2THF crystallizes in the monoclinic space group P21/n with Z=2 and unit cell dimensionsa=18.022(2),b=18.375(2) andc=22.254(3) Å; the structure was refined to R=6.4% using 5173 unique data with I>3ϖ(Io). Compound (3b) crystallizes in the hexagonal space groupP63/m with Z=2 and unit cell dimensionsa=b=16.827(3) andc=15.951(16) Å; the structure was refined to R=4.9% using 1296 unique data with I>3ϖ(Io). Its characteristics are discussed and compared with those of known compounds. The ratios of core volumes S4/M4 are within the 2.34–2.40 range for core oxidation level [MoFe3S4]3+ indicating that distortion of the cubane core is a general phenomenon. Different thiolato ligands induce significant changes of structural parameters only at the Fe(SR)6 region for compound (2A) while terminal chlorides induce changes over the whole molecule of (3b) with the latter structure more comparable to [Mo2Fe6S8(SPh)9]5− (3f) with [MoFe3S4]2+ core than to [Mo2Fe6S8(SPh)9]3− (3d). The isotropic shifts of (2A) originate mainly from π-contact interaction. Both1H n.m.r. spectra and magnetic susceptibility measurements indicate practically no magnetic interaction among the three magnetic centres,i.e. a Fe(SR)6 bridge and two [MoFe3S4(SR)3] units. CV studies showed that the reduction of cubane unit having aromatic thiolates is easier than that having aliphatic thiolates as the aliphatic group is electron-donating. In addition, the very similar differences of Ep,c for first and second cubane units in compounds (2A) and in (3d) and (3e) imply that the effect of the first reduced unit [MoFe3S4]2+ upon the second unit [MoFe3S4]3+ is very similar in the two types of dicubane cluster compounds. Synergism in Mo−Fe−S cluster compounds is thus proposed to play an important role in their structural correlation with reactivities and must function in nitrogenase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. K. Shah, W. J. Brill,Proc. Nat. Acad. Sci. U.S.A. 74, 3249 (1977).

    Google Scholar 

  2. B. K. Burgess in C. Veeger and W. F. Newton (eds.)Advances in Nitrogen Fixation Research, Proc. 5th Int. Sym. On N2 Fixation, Nijhoff, Pudoc, 1984, p. 103 and refs cited therein.

    Google Scholar 

  3. W. E. Newton, S. F. Gheller, B. Hedman, K. D. Hodgson, S. M. Lough, J. W. McDonald,Eur. J. Biochem. 159, 111 (1986).

    Google Scholar 

  4. J. X. Lu,Kexue Tongbao,20, 540 (1975);25, 191 (1980); Q. R. Cai,Acta Sci. Natur. Univ. Amoiensis,18, 30 (1979);21, 424 (1982); S. P. Cramer, K. D. Hodgson, W. O. Gillum, L. E. Mortenson,J. Am. Chem. Soc.,100, 3398 (1978); G. Christou, K. B. Hagen, R. H. Holm,J. Am. Chem. Soc.,104, 1744 (1982); W. H. Orme-Johnson in Abstr 186th ACS Annual Meeting, Washington D.C., 1983, no. 301.

    Google Scholar 

  5. P. K. Mascharak, W. H. Armstrong, Y. Mizobe, R. H. Holm,J. Am. Chem. Soc.,105, 475 (1983);

    Google Scholar 

  6. W. H. Armstrong, P. K. Mascharak, R. H. Holm,Inorg. Chem.,21, 1699 (1982);

    Google Scholar 

  7. G. Christou, P. K. Mascharak, W. H. Armstrong, G. C. Papaefthymiou, R. B. Frankel, R. H. Holm,J. Am. Chem. Soc.,104, 2820 (1982).

    Google Scholar 

  8. T. E. Wolff, P. P. Power, R. B. Frankel, R. H. Holm,J. Am. Chem. Soc.,102, 4694 (1980);

    Google Scholar 

  9. G. Christou, C. D. Garner,J. Chem. Soc. Dalton Trans., 2354 2363 (1980);

    Google Scholar 

  10. T. E. Wolff, J. M. Berg, K. O. Hodgson, R. B. Frankel and R. H. Holm,J. Am. Chem. Soc.,101, 4140 (1979);

    Google Scholar 

  11. W. E. Cleland Jr., B. A. Averill,Inorg. Chim. Acta,107, 187 (1985);

    Google Scholar 

  12. J. A. Kovacs, J. K. Bashkin, R. H. Holm,J. Am. Chem. Soc. 107, 1784 (1985);

    Google Scholar 

  13. R. E. Palermo, R. H. Holm,J. Am. Chem. Soc.,105, 4310 (1983);

    Google Scholar 

  14. T. E. Wolff, J. M. Berg, R. H. Holm,Inorg. Chem.,20, 174 (1981).

    Google Scholar 

  15. B.-S. Kang, J.-H. Cai, C.-N. Cheng, J.-X. Lu,Acta Chimica Sinica,44, 781 (1986); 209 (1986);

    Google Scholar 

  16. H.-Q. Liu, D.-X. Wu, B.-S. Kang,Chinese J. of Microwave and Radio-frequency Spectroscopy,4, 13 (1987);

    Google Scholar 

  17. B.-S. Kang, L.-R. Huang, J.-H. Cai, Y. Yang, J.-X. Lu,Acta Chimica Sinica,45, 1152 (1987);

    Google Scholar 

  18. B.-S. Kang, D.-X. Wu, H.-Q. Liu,Acta Chim. Sinica,47, 64 (1989);

    Google Scholar 

  19. B.-S. Kang, H.-H. Cai, D.-X. Wu, H.-Q. Liu, Q.-T. Liu, L.-H. Weng, J.-X. Lu,Acta Chim. Sinica, in press;

  20. H.-Q. Liu, B.-S. Kang, J.-H. Cai, L.-R. Huang, D.-X. Wu, F. Wang, Z. Guo, A.-Z. Cong, J.X. Lu,Jiegou Huaxue,7, 171 (1988);

    Google Scholar 

  21. B.-S. Kang, H.-Q. Liu, F. Wang, Z. Guo, W.-Z. Cheng, Z.-C. Lu, X.-P. Wang, J.-X. Lu,Chi. J. Appl. Chem.,5, 67 (1988).

    Google Scholar 

  22. Q.-T. Liu, L.-R. Huang, B.-S. Kang, C.-W. Liu, L.-L. Wang, J.-X. Lu,Acta Chim. Sinica,44, 343 (1986) (Ch); 107 (1986) (Eng).

    Google Scholar 

  23. Q.-T. Liu, L.-R. Huang, B.-S. Kang, Y. Yang, J.-X. Lu,Kexue Tongbao,31, 904 (1986);32, 898 (1987);Acta Chim. Sinica,45, 133 (1987);

    Google Scholar 

  24. Q.-T. Liu, L.-R. Huang, Y. Yang, J.-X. Lu,Acta Chim. Sinica,46, 1 (1988).

    Google Scholar 

  25. Q.-T. Liu, L.-R. Huang, Y. Yang, J.-X. Lu,Acta Chim. Sinica, in press.

  26. Q.-T. Liu, B.-S. Kang, C.-N Cheng, L.-R. Huang, J.-H. Cai, B. T. Zhuang, J. X. Lu,Scientia Sinica,B, 920 (1988).

    Google Scholar 

  27. G. Kruss,Justus Liebigs Ann. Chem.,225, 29 (1884).

    Google Scholar 

  28. J. W. McDonald, G. D. Friesen, L. D. Rosenhein, W. E. Newton,Inorg. Chim. Acta,72, 205 (1983).

    Google Scholar 

  29. K. S. Hagen, J. G. Reynolds, R. H. Holm,J. Am. Chem. Soc.,103, 4054 (1981).

    Google Scholar 

  30. K. S. Hagen, D. W. Stephan, R. H. Holm,Inorg. Chem.,21, 3928 (1982);

    Google Scholar 

  31. K. S. Hagen, J. M. Berg, R. H. Holm,Inorg. Chim. Acta,45, L17 (1980).

    Google Scholar 

  32. C.-N. Cheng, unpublished results.

  33. E. M. Kosower,An Introduction to Physical Organic Chemistry, John Wiley and Sons, N.Y., p. 334 (1968).

    Google Scholar 

  34. B.-S. Kang, unpublished results.

  35. R. W. Johnson, R. H. Holm,J. Am. Chem. Soc.,100, 5338 (1978);

    Google Scholar 

  36. G. B. Wong, M. A. Bobrik, R. H. Holm,Inorg. Chem.,17, 578 (1978).

    Google Scholar 

  37. R. E. Palermo, P. P. Power, R. H. Holm,Inorg. Chem.,21, 173 (1982);

    Google Scholar 

  38. G. Christou, C. D. Garner,J. Chem. Soc., Chem. Comm., 613 (1980).

  39. L. M. Epstein, D. K. Straub,Inorg. Chem.,8, 560 (1969).

    Google Scholar 

  40. Q.-T. Liu, unpublished results.

  41. Q.-T. Liu, L.-R. Huang, H.-Q. Liu, X.-J. Lei, B.-S. Kang, J.-X. Lu, submitted for publication inInorg. Chem.

  42. T. E. Wolff, J. M. Berg, P. P. Power, K. O. Hodgson, R. H. Holm, R. B. Frankel,J. Am. Chem. Soc.,101, 5454 (1979).

    Google Scholar 

  43. T. E. Wolff, J. M. Berg, P. P. Power, K. O. Hodgson, R. H. Holm,Inorg. Chem.,19, 430 (1980).

    Google Scholar 

  44. G. Christou, C. D. Garner, F. E. Mabbs, T. J. King,J. Chem. Soc., Chem. Commun., 740 (1978);

  45. J.-H. Cai, C.-N. Chen,Jiegou Huaxue,3, 33 (1984).

    Google Scholar 

  46. J.-H. Cai, B.-S. Kang,Jiegou Huaxue,4, 82 (1985).

    Google Scholar 

  47. L.-R. Huang, S.-H. Lin,Jiegou Huaxue,3, 25 (1984).

    Google Scholar 

  48. P. K. Mascharak, W. H. Armstrong, Y. Mizobe, R. H. Holm,J. Am. Chem. Soc.,105, 475 (1983).

    Google Scholar 

  49. M. A. Bobrik, K. O. Hodgson, R. H. Holm,Inorg. Chem.,16, 1851 (1977).

    Google Scholar 

  50. Y. P. Zhang, J. K. Bashkin, R. H. Holm,Inorg. Chem.,26, (1987).

  51. J. A. Kovacs, R. H. Holm,Inorg. Chem.,26, 711 (1987).

    Google Scholar 

  52. R. H. Tieckelmann, H. C. Silvis, T. A. Kent, B. H. Huynh, J. V. Waszczak, B. K. Teo, B. A. Averill,J. Am. Chem. Soc.,102, 5550 (1980).

    Google Scholar 

  53. D. Coucouvanis, D. Swenson, N. C. Baenziger, C. Murphy, D. G. Holah, N. Sfarnas, A. Simopoulos, A. Kostikas,J. Am. Chem. Soc.,103, 3350 (1981).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kang, B., Liu, H., Cai, J. et al. Synergism in molybdenum iron sulphur cluster compounds. Synthetic, structural, magnetic, cyclic voltammetric evidence and the reaction of dicubane clusters containing [MoFe3S4] unit. Transition Met Chem 14, 427–438 (1989). https://doi.org/10.1007/BF01092584

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01092584

Keywords

Navigation