Skip to main content
Log in

Productivity response of climax temperate forests to elevated temperature and carbon dioxide: a north american comparison between two global models

  • Published:
Climatic Change Aims and scope Submit manuscript

Abstract

We assess the appropriateness of using regression- and process-based approaches for predicting biogeochemical responses of ecosystems to global change. We applied a regression-based model, the Osnabruck Model (OBM), and a process-based model, the Terrestrial Ecosystem Model (TEM), to the historical range of temperate forests in North America in a factorial experiment with three levels of temperature (+0 °C, +2 °C, and +5 °C) and two levels of CO2 (350 ppmv and 700 ppmv) at a spatial resolution of 0.5° latitude by 0.5° longitude. For contemporary climate (+0 °C, 350 ppmv), OBM and TEM estimate the total net primary productivity (NPP) for temperate forests in North America to be 2.250 and 2.602 × 1015 g C ⋅ yr−1, respectively. Although the continental predictions for contemporary climate are similar, the responses of NPP to altered climates qualitatively differ; at +0 °C and 700 ppmv CO2, OBM and TEM predict median increases in NPP of 12.5% and 2.5%, respectively. The response of NPP to elevated temperature agrees most between the models in northern areas of moist temperate forest, but disagrees in southern areas and in regions of dry temperate forest. In all regions, the response to CO2 is qualitatively different between the models. These differences occur, in part, because TEM includes known feedbacks between temperature and ecosystem processes that affect N availability, photosynthesis, respiration, and soil moisture. Also, it may not be appropriate to extrapolate regression-based models for climatic conditions that are not now experienced by ecosystems. The results of this study suggest that the process-based approach is able to progress beyond the limitations of the regression-based approach for predicting biogeochemical responses to global change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aber, J. D., Melillo, J. M., and Federer, C. A.: 1982, ‘Predicting the Effects of Rotation Length, Harvest Intensity, and Fertilization on Fiber Yield from Northern Hardwood Forests in New England’,For. Sci. 28, 31–48.

    Google Scholar 

  • Agren, G. I., McMurtrie, R. E., Parton, W. J., Pastor, J., and Shugart, H. H.: 1991, ‘State-of-the-Art of Models of Production-Decomposition Linkages in Conifer and Grassland Ecosystems’,Ecol. Appl. 1, 118–138.

    Google Scholar 

  • Auchmoody, L. R. and Smith, H. C.: 1977, ‘Responses of Yellow-Poplar and Red Oak to Fertilization in West Virginia’,Soil Sci. Soc. Am. Proc. 41, 803–807.

    Google Scholar 

  • Bacastow, R. and Keeling, C. D.: 1973, ‘Atmospheric Carbon Dioxide and Radiocarbon in the Natural Carbon Cycle: Changes from A.D. 1700 to 2070 as Deduced from a Geochemical Model’, in Woodwell, G. M. and Pecan, E. V. (eds.),Carbon and the Biosphere, (CONF-720510), Atomic Energy Commission, Washington, D.C., pp. 86–135.

    Google Scholar 

  • Bazzaz, F. A.: 1990, ‘The Response of Natural Ecosystems to the Rising Global CO2 Levels’,Annu. Rev. Ecol. Syst. 21, 167–196.

    Google Scholar 

  • Binkley, D.: 1986,Forest Nutrition Management, John Wiley and Sons, New York, 290 pp.

    Google Scholar 

  • Brown, K. and Higginbotham, K. O.: 1986, ‘Effects of Carbon Dioxide Enrichment and Nitrogen Supply on Growth of Boreal Tree Seedlings’,Tree Physiol. 2, 223–232.

    Google Scholar 

  • Burke, I. C., Schimel, D. S., Parton, W. J., Yonker, C. M., Joyce, L. A., and Lauenroth, W. K.: 1990, ‘Regional Modeling of Grassland Biogeochemistry Using GIS’,Landsc. Ecol. 4, 45–54.

    Google Scholar 

  • Burke, I. C., Kittel, T. G. F., Lauenroth, W. K., Snook, P., Yonker, C. M., and Parton, W. J.: 1991, ‘Regional Analysis of the Central Great Plains’,BioScience 41, 685–692.

    Google Scholar 

  • Cohen, Y. and Pastor, J.: 1991, ‘The Responses of a Forest Model to Serial Correlations of Global Warming’,Ecology 72, 1161–1165.

    Google Scholar 

  • Cook, E. R. and Cole, J.: 1991, ‘On Predicting the Response of Forests in Eastern North America to Future Climatic Change’,Clim. Change 19, 271–282.

    Google Scholar 

  • Ellis, R. C.: 1979, ‘Response of Crop Trees of Sugar Maple, White Ash, and Black Cherry to Release and Fertilization’,Can. J. For. Res. 9, 179–188.

    Google Scholar 

  • Esser, G.: 1987, ‘Sensitivity of Global Carbon Pools and Fluxes to Human and Potential Climatic Impacts’,Tellus 39B, 245–260.

    Google Scholar 

  • Esser, G.: 1991, ‘Osnabruck Biosphere Model: Structure, Construction, Results’, in Esser, G. and Overdieck, D. (eds.),Modern Ecology: Basic and Applied Aspects, Elsevier, Amsterdam, pp. 679–709.

    Google Scholar 

  • FAO-UNESCO: 1971, ‘Soil Map of the World 1: 5,000,000’, UNESCO, Paris, France.

    Google Scholar 

  • Gates, D. M.: 1985, ‘Global Biospheric Response to Increasing Atmospheric Carbon Dioxide Concentration’, in Strain, B. R., and Cure, J. D. (eds.),Direct Effects of Increasing Carbon Dioxide on Vegetation, DOE/ER-0238, United States Department of Energy, Washington, D.C., pp. 171–184.

    Google Scholar 

  • Gillette, D. A. and Box, E. O.: 1986, ‘Modeling Seasonal Changes of Atmospheric Carbon Dioxide and Carbon 13’,J. Geophys. Res. 91, 5287–5304.

    Google Scholar 

  • Goudriaan, J. and de Ruiter, H. E.: 1983, ‘Plant Growth in Response to CO2 Enrichment at Two Levels of Nitrogen and Phosphorus Supply. 1. Dry Matter, Leaf Area, and Development’,Neth. J. Agric. Sci. 31, 157–169.

    Google Scholar 

  • Graham, R. L., Turner, M. G., and Dale, V. H.: 1990, ‘How Increasing CO2 and Climate Change Affect Forests’,BioScience 40, 575–587.

    Google Scholar 

  • Hahn, J., Warren, S. G., London, J., and Roy, J. L.: 1988, ‘Climatological Data for Clouds over the Globe from Surface Observations’, United States Department of Energy, Oak Ridge, Tennessee.

    Google Scholar 

  • Houghton, R. A. and Skole, D. L.: 1990, ‘Carbon’, in Turner, B. L., Clark, W. C., Kates, R. W., Richards, J. F., Mathews, J. T., and Meyer, W. B. (eds.),The Earth as Transformed by Human Action, Cambridge University Press, Cambridge, U.K., pp. 393–408.

    Google Scholar 

  • Houghton, R. A., Hobbie, J. E., Melillo, J. M., Moore, B., Peterson, B. J., Shaver, G. R., and Woodwell, G. M.: 1983, ‘Changes in the Carbon Content of Terrestrial Biota and Soils between 1860 and 1980: A Net Release of CO2 to the Atmosphere’,Ecol. Monogr. 53, 235–262.

    Google Scholar 

  • Houghton, R. A., Skole, D. L., and Lefkowitz, D. S.: 1991, ‘Changes in the Landscape of Latin America between 1850 and 1985. I. Progressive Loss of Forests’,Forest Ecol. Managem. 38, 143–172.

    Google Scholar 

  • Jarvis, P. G.: 1989, ‘Atmospheric Carbon Dioxide and Forests’,Philosoph. Transact. Roy. Soc. London B 324, 369–392.

    Google Scholar 

  • Joyce, L. A., Fosberg, M. A., and Comanor, J. M.: 1990, ‘Climate Change and America's Forests’, General Technical Report RM-187, USDA Forest Service, Rocky Mountain Forest and Range Experiment Station, Ft. Collins, CO, 12 pp.

    Google Scholar 

  • Kellogg, W. W. and Zhao, Z.: 1988, ‘Sensitivity of Soil Moisture to Doubling of Carbon Dioxide in Climate Model Experiments. Part I: North America’,J. Clim. 1, 348–366.

    Google Scholar 

  • Kimball, B. A.: 1975, ‘Carbon Dioxide and Agricultural Yield: An Assemblage and Analysis of 430 Prior Observations’,Agron. J. 75, 779–788.

    Google Scholar 

  • King, A. W., O'Neill, R. V., and DeAngelis, D. L.: 1989, ‘Using Ecosystem Models to Predict Regional CO2 Exchange between the Atmosphere and the Terrestrial Biosphere’,Glob. Biogeochem. Cycl. 3, 337–361.

    Google Scholar 

  • Klopatek, J. M., Olson, R. J., Emerson, C. J., and Joness, J. L.: 1979, ‘Land-Use Conflicts with Natural Vegetation in the United States’,Environmental Conserv. 6, 191–199.

    Google Scholar 

  • Kramer, P. J.: 1981, ‘Carbon Dioxide Concentration, Photosynthesis, and Dry Matter Production’,BioScience 31, 29–33.

    Google Scholar 

  • Larigauderie, A., Hilbert, D. W., and Oechel, W. C.: 1988, ‘Interaction between High CO2 Concentrations and Multiple Environmental Stresses inBromus mollis’,Oecologia 77, 544–549.

    Google Scholar 

  • Legates, D. R. and Willmott, C. J.: 1988, ‘Global Air Temperature and Precipitation Data Archive’, Department of Geography, University of Delaware, Newark, Delaware.

    Google Scholar 

  • Lieth, H.: 1973, ‘Primary Production: Terrestrial Ecosystems’,Human Ecol. 1, 303–332.

    Google Scholar 

  • Lieth, H.: 1975, ‘Modeling the Primary Productivity of the World’, in Lieth, H. and Whittaker, R. H. (eds.),Primary Productivity of the Biosphere, Springer-Verlag, New York, pp. 237–263.

    Google Scholar 

  • McGuire, A. D., Melillo, J. M., Joyce, L. A., Kicklighter, D. W., Grace, A. L., Moore, B., III, and Vorosmarty, C. J.: 1992, ‘Interactions between Carbon and Nitrogen Dynamics in Estimating Net Primary Productivity for Potential Vegetation in North America’,Global Biogeochem. Cycl. 6, 101–124.

    Google Scholar 

  • Melillo, J. M., Fruci, J. R., Houghton, R. A., Moore, B., and Skole, D. L.: 1988, ‘Land-Use Change in the Soviet Union between 1850 and 1980’,Tellus 36B, 232–261.

    Google Scholar 

  • Melillo, J. M., Steudler, P. A., Aber, J. D., and Bowden, R. D.: 1989, ‘Atmospheric Deposition and Nutrient Cycling’, in Andreae, M. O., and Schimel, D. S. (eds.),Exchange of Trace Gases between Terrestrial Ecosystems and the Atmosphere, John Wiley and Sons, Chichester, U.K., pp. 263–280.

    Google Scholar 

  • Melillo, J. M., Callaghan, T. V., Woodward, F. I., Salati, E., and Sinha, S. K.: 1990, ‘Effects on Ecosystems’, in Houghton, J. T.et al. (eds.),Climate Change: The IPCC Scientific Assessment, Cambridge University Press, Cambridge, pp. 283–310.

    Google Scholar 

  • Miller, H. G.: 1981, ‘Forest Fertilization: Some Guiding Concepts’,Forestry 54, 157–167.

    Google Scholar 

  • Mitchell, H. L. and Chandler, R. F., Jr.: 1939, ‘The Nitrogen Nutrition and Growth of Certain Deciduous Trees of Northeastern United States’,Black Rock For. Bull. 11, 1–94.

    Google Scholar 

  • Mitchell, J. F. B., Manabe, S., Meleshko, V., and Tokioka, T.: 1990, ‘Equilibrium Climate Change - and Its Implications for the Future’, in Houghton, J. T.et al. (eds.),Climate Change: The IPCC Scientific Assessment, Cambridge University Press, Cambridge, pp. 131–172.

    Google Scholar 

  • Mooney, H. A., Drake, B. G., Luxmoore, R. J., Oechel, W. C., and Pitelka, L. F.: 1991, ‘Predicting Ecosystem Responses to Elevated CO2 Concentrations’,BioScience 41, 96–104.

    Google Scholar 

  • Myers, N.: 1991, ‘Tropical Forests: Present Status and Future Outlook’,Clim. Change 19, 3–32.

    Google Scholar 

  • Oberbauer, S. F., Sionit, N., Hastings, S. J., and Oechel, W. C.: 1986, ‘Effects of CO2 Enrichment and Nutrition on Growth, Photosynthesis, and Nutrient Concentration of Alaskan Tundra Plant Species’,Can. J. Bot. 64, 2993–2998.

    Google Scholar 

  • Oechel, W. C. and Riechers, G. H.: 1986, ‘Impacts of Increasing CO2 on Natural Vegetation, Particularly the Tundra’, inProceedings of Climate-Vegetation Workshop, NASA/GSFC, Greenbelt, Maryland, pp. 36–42.

    Google Scholar 

  • Overpeck, J. T., Bartlein, P. J., and Webb, T., III: 1991, ‘Potential Magnitude of Future Vegetation Change in Eastern North America: Comparisons with the Past’,Science 254, 692–695.

    Google Scholar 

  • Parton, W. J., Schimel, D. S., Cole, C. V., and Ojima, D. S.: 1987, ‘Analysis of Factors Controlling Soil Organic Matter Levels in Great Plains Grasslands’,Soil Sci. Soc. Am. Proc. 51, 1173–1179.

    Google Scholar 

  • Pastor, J. and Post, W. M.: 1986, ‘Influence of Climate, Soil Moisture, and Succession on Forest Carbon and Nitrogen Cycles’,Biogeochemistry 2, 3–27.

    Google Scholar 

  • Pastor, J. and Post, W. M.: 1988, ‘Response of Northern Forests to CO2-Induced Climate Change’,Nature 334, 55–58.

    Google Scholar 

  • Pastor, J., Aber, J. D., McClaugherty, C. A., and Melillo, J. M.: 1984, ‘Aboveground Production and N and P Cycling along a Nitrogen Mineralization Gradient on Blackhawk Island, Wisconsin’,Ecology 65, 256–268.

    Google Scholar 

  • Peterson, C.: 1982, ‘Regional Growth and Response Analysis for Unthinned Douglas-Fir’, inRegional Forest Nutrition Research Project Biennial Report, 1980–82, University of Washington College of Forest Resources, Seattle, pp. 3–25.

    Google Scholar 

  • Raich, J. W., Rastetter, E. B., Melillo, J. M., Kicklighter, D. W., Steudler, P. A., Peterson, B. J., Grace, A. L., Moore, B., III, and Vorosmarty, C. J.: 1991, ‘Potential Net Primary Productivity in South America: Application of a Global Model’,Ecol. Appl. 1, 399–429.

    Google Scholar 

  • Rastetter, E. B., Ryan, M. G., Shaver, G. R., Melillo, J. M., Nadelhoffer, K. J., Hobbie, J. E., and Aber, J. D.: 1991, ‘A General Biogeochemical Model Describing the Responses of the C and N Cycles in Terrestrial Ecosystems to Changes in CO2, Climate, and N Deposition’,Tree Physiol. 9, 101–126.

    Google Scholar 

  • Rosenzweig, M. L.: 1968, ‘Net Primary Productivity of Terrestrial Communities: Prediction from Climatological Data’,Am. Nat. 102, 67–74.

    Google Scholar 

  • Running, S. W., and Nemani, R. R.: 1991, ‘Regional Hydrologic and Carbon Balance Responses of Forests Resulting from Potential Climate Change’,Clim. Change 19, 349–368.

    Google Scholar 

  • Running, S. W., Nemani, R. R., Peterson, D. L., Band, L. E., Potts, D. F., Pierce, L. L., and Spanner, M. A.: 1989, ‘Mapping Regional Forest Evapotranspiration and Photosynthesis by Coupling Satellite Data with Ecosystem Simulation’,Ecology 70, 1090–1101.

    Google Scholar 

  • Safford, L. O. and Filip, S. M.: 1974, ‘Biomass and Nutrient Content of 4-Year-Old Fertilized and Unfertilized Hardwood Stands’,Can. J. For. Res. 4, 549–554.

    Google Scholar 

  • Schimel, D. S., Parton, W. J., Kittel, T. G. F., Ojima, D. S., and Cole, C. V.: 1990, ‘Grassland Biogeochemistry: Links to Atmospheric Processes’,Clim. Change 17, 13–25.

    Google Scholar 

  • Shands, W. E. and Hoffman, J. S. (eds.): 1987,The Greenhouse Effect, Climate Change, and U.S. Forests’, The Conservation Foundation, Washington, DC.

    Google Scholar 

  • Solomon, A. M.: 1986, ‘Transient Response of Forests to CO2-Induced Climate Change: Simulation Modeling Experiments in Eastern North America’,Oecologia 68, 567–579.

    Google Scholar 

  • Tissue, D. T. and Oechel, W. C.: 1987, ‘Response ofEriophorum vaginatum to elevated CO2 and Temperature in the Alaskan Tussock Tundra’,Ecology 68, 401–410.

    Google Scholar 

  • Vitousek, P. M. and Howarth, R. W.: 1991, ‘Nitrogen Limitation on Land and in the Sea: How Can It Occur?’,Biogeochemistry 13, 87–115.

    Google Scholar 

  • Vorosmarty, C. J., Moore, B., III, Grace, A. L., Gildea, M. P., Melillo, J. M., Peterson, B. J., Rastetter, E. B., and Steudler, P. A.: 1989, ‘Continental Scale Models of Water Balance and Fluvial Transport: An Application to South America’,Glob. Biogeochem. Cycl. 3, 241–265.

    Google Scholar 

  • Waddell, K. L., Oswald, D. D., and Powell, D. S.: 1989, ‘Forest Statistics of the United States, 1987’, Resource Bulletin PNW-RB-168, USDA Forest Service, Pacific Northwest Research Station, Portland, OR, 106 pp.

    Google Scholar 

  • Watson, R. T., Filho, L. G. M., Sanhueza, E., and Janetos, A.: 1992, ‘Greenhouse Gases: Sources and Sinks’, in Houghton, J. T.et al. (eds.),Climate Change 1992: The Supplementary Report to the IPCC Scientific Assessment, Cambridge University Press, Cambridge, pp. 25–46.

    Google Scholar 

  • Wong, S. C.: 1979: ‘Elevated Atmospheric Partial Pressure of CO2 and Plant Growth. I. Interactions of Nitrogen Nutrition and Photosynthetic Capacity in C3 and C4 Plants’,Oecologia 44, 68–74.

    Google Scholar 

  • Zangerl, A. R. and Bazzaz, F. A.: 1984, ‘The Response of Plants to Elevated CO2. II. Competitive Interactions among Annual Plants under Varying Light and Nutrients’,Oecologia 62, 412–417.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

McGuire, A.D., Joyce, L.A., Kicklighter, D.W. et al. Productivity response of climax temperate forests to elevated temperature and carbon dioxide: a north american comparison between two global models. Climatic Change 24, 287–310 (1993). https://doi.org/10.1007/BF01091852

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01091852

Keywords

Navigation