Skip to main content
Log in

A\(\overline {Poincar\acute{e}} \) gauge theory of gravity

  • Research Articles
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

We develop a gauge theory of gravity on the basis of the principal fiber bundle over the four-dimensional space-timeM with the covering group 0 of the proper orthochronous Poincaré group. The field components\(e^k _\mu \) are constructed with the connection coefficients\(A^k _\mu \),\(A^{kl} _\mu \) and with a Higgs-type fieldψ. A Lorentz metricg is introduced with\(e^k _\mu \), which are then identified with the components of duals of the Vierbein fields. Associated with ψ there is a spinor structure onM. For Lagrangian densityL, which is a function of\(A^k _\mu \),\(A^{kl} _\mu \),ψ, matter field φ, and oftheir first derivatives, we give the conditions imposed by the requirement of the\(\overline {Poincar\acute{e}} \) gauge invariance. The Lagrangian densityL is restricted to be of the formL =L tot(ψ, T klm,R klmn,Δ k φ, φ), in whichT klm,R klmn are the field strengths of\(e^k _\mu \),\(A^{kl} _\mu \), respectively. Identities and conservation laws following from the\(\overline {Poincar\acute{e}} \) gauge invariance are given. Particularly noteworthy is the fact that the energy momentum conservation law follows from theinternal translational invariance. The field equation of ψ is automatically satisfied, if those of\(A^k _\mu \) and of φ are both satisfied. The possible existence of matter fields with “intrinsic” energy momentum is pointed out. When φ is a field with vanishing “intrinsic” energy momentum, the present theory practically agrees with the conventional “Poincaré gauge” theory of gravity, except for the seemingly trivial terms in the expression of the spin-angular momentum density. A condition leading to a Riemann-Cartan space-time is given. The fieldψ holds a key position in the formulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ivanenko, D., and Sardanashvily, G. (1983).Phys. Reps.,94, 1.

    Google Scholar 

  2. Cho, Y. M. (1976).Phys. Rev. D,14, 3335.

    Google Scholar 

  3. Petti, R. J. (1976).Gen. Rel. Grav.,7, 869.

    Google Scholar 

  4. Pilch, K. A. (1980).Lett. Math. Phys.,4, 49.

    Google Scholar 

  5. Henning, J., and Nitsch, J. (1981).Gen. Rel. Grav.,13, 947.

    Google Scholar 

  6. Drechsler, W. (1982).Ann. Inst. H. Poincaré,37, 155.

    Google Scholar 

  7. Drechsler, W. (1984).Fortschr. Phys.,32, 449.

    Google Scholar 

  8. Mckellar, R. J. (1984).J. Math. Phys.,25, 161.

    Google Scholar 

  9. Dass, T. (1984).Pramāna,23, 433.

    Google Scholar 

  10. Lurçat, F. (1964).Physics,1, 95.

    Google Scholar 

  11. Kobayashi, S., and Nomizu, K. (1963).Foundations of Differential Geometry, vol.1 (Interscience, New York).

    Google Scholar 

  12. Trautman, A. (1980). InGeneral Relativity and Gravitation—One Hundred Years After the Birth of Albert Einstein, vol.1 (Plenum, New York and London), p. 287.

    Google Scholar 

  13. Naimark, M. A. (1964).Linear Representations of the Lorentz Group (Pergamon, Oxford).

    Google Scholar 

  14. Geroch, R. (1968).J. Math. Phys.,9, 1739.

    Google Scholar 

  15. Hayashi, K. (1968).Prog. Theor. Phys.,39, 494.

    Google Scholar 

  16. Hayashi, K., and Bregman, A. (1973).Ann. Phys.,75, 562.

    Google Scholar 

  17. Ne'eman, Y. (1978). InLecture Notes in Mathematics, vol. 676 (Springer-Verlag, Berlin, Heidelberg, New York), p. 189.

    Google Scholar 

  18. Kibble, T. W. (1961).J. Math. Phys.,2, 212.

    Google Scholar 

  19. Kopczyński, W. (1982).J. Phys. A: Math. Gen.,15, 493.

    Google Scholar 

  20. Matsushima, Y. (1972).Differentiable Manifolds, Chap. IV (Marcel Dekker, New York).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kawai, T. A\(\overline {Poincar\acute{e}} \) gauge theory of gravity. Gen Relat Gravit 18, 995–1018 (1986). https://doi.org/10.1007/BF01090482

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01090482

Keywords

Navigation