Skip to main content
Log in

Quantitative determination of calcium-activated myosin adenosine triphosphatase activity in rat skeletal muscle fibres

  • Papers
  • Published:
The Histochemical Journal Aims and scope Submit manuscript

Summary

A quantitative histochemical technique was developed for determining the kinetics of the calcium-activated myosin ATPase (Ca2+-myosin ATPase) reaction in rat skeletal muscle fibres. Using this technique, the maximum velocity (Vmax) and the apparent Michaelis-Menten rate constant for ATP (Kapp) of the Ca2+-myosin ATPase reaction were measured in type-identified fibres of the rat medial gastrocnemius (MG) muscle. The Vmax and the Kapp of the Ca2+-myosin ATPase reaction were lowest in type I fibres and highest (i.e., approx. two times greater) in type IIb fibres. The Kapp in type IIa fibres was similar to that in type I. However, the Vmax was 1.5 times greater in type IIa fibres, compared to type I fibres. Evidence is presented to suggest that the type IIb fibre population in the MG does not represent a single myosin isozyme. In addition, the broad range of Vmax and Kapp values indicates that there is marked heterogeneity in the myosin heavy chain and myosin light chain composition of myosin isozymes among individual fibres.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • AFIFI, A. A. & AZEN, S. P. (1979)Statistical Analysis: a Computer-Oriented Approach. New York: Academic Press.

    Google Scholar 

  • BAR, A. & PETTE, D. (1988) Three fast myosin heavy chains in adult rat skeletal muscle.FEBS Lett. 235, 153–5.

    PubMed  Google Scholar 

  • BARANY, M. (1967) ATPase activity of myosin correlated with speed of shortening.J. Gen. Physiol. 50, 197–216.

    PubMed  Google Scholar 

  • BLANCO, C. E. & SIECK, G. C. (1987) Comparison of succinate dehydrogenase activity between the diaphragm and medial gastrocnemius muscles of the rat. InRespiratory Muscles and their Neuromotor Control (edited bySieck, G. C., Gandevia, S. C. & Cameron, W. E.) pp. 281–9. New York: Alan R. Liss.

    Google Scholar 

  • BLANCO, C. E., SIECK, G. C. & EDGERTON, V. R. (1988) Quantitative histochemical determination of succinic dehydrogenase activity in skeletal muscle fibres.Histochem. J. 20, 230–43.

    PubMed  Google Scholar 

  • BLANCO, C. E., FOURNIER, M. & SIECK, G. C. (1991) Metabolic variability within individual fibres of the cat tibialis posterior and diaphragm muscles.Histochem. J. 23, 366–74.

    PubMed  Google Scholar 

  • BROOKE, M. H. & KAISER, K. K. (1970) Three ‘myosin adenosine triphosphatase’ systems: the nature of their pH lability and sulfhydryl dependence.J. Histochem. Cytochem. 18, 670–2.

    PubMed  Google Scholar 

  • BUTLER-BROWNE, G. S. & WHALEN, R. G. (1984) Myosin isozyme transitions occurring during the postnatal development of the rat soleus muscle.Dev. Biol. 102, 324–34.

    PubMed  Google Scholar 

  • CABRINI, R. L., FRASCH, A. C. C. & ITOIZ, M. E. (1975) A quantitative microspectrophotometric study of the lead precipitation reaction for the histochemical demonstration of acid phosphatase.Histochem. J. 7, 419–26.

    PubMed  Google Scholar 

  • CHAYEN, J., FROST, G. T. B., DODDS, R. A., BITENSKY, L., Pitchfork, J., Baylis, P. H. & Barnett, R. J. (1981) The use of a hidden metal-capture reagent for the measurement of Na+−K+-ATPase activity: a new concept in cytochemistry.Histochemistry 71, 533–41.

    PubMed  Google Scholar 

  • DALLA LIBERA, L., SARTORE, S., PIEROBON-BORMIOLI, S. & SCHIAFFINO, S. (1980) Fast-white and fast-red isomyosins in guinea pig muscles.Biochem. Biophys. Res. Commun. 96, 1662–70.

    PubMed  Google Scholar 

  • EDDINGER, T. J. & MOSS, R. L. (1987) Mechanical properties of skinned single fibers of identified types from rat diaphragm.Am. J. Physiol. 253, C210–8.

    PubMed  Google Scholar 

  • EISENBERG, B. R. (1983) Quantitative ultrastructure of mammalian skeletal muscle. InHandbook of Physiology: Skeletal Muscle Section 10, Chapter 3, pp. 73–112. Bethesda, MD: American Physiological Society.

    Google Scholar 

  • EISENBERG, B. R., KUDA, A. M. & PETER, J. B. (1974) Stereological analysis of mammalian skeletal muscle. I. Soleus muscle of the adult guinea pig.J. Cell Biol. 60, 732–54.

    PubMed  Google Scholar 

  • GOLDSTEIN, D. J. (1981) Errors in microdensitometry.Histochem. J. 13, 251–67.

    PubMed  Google Scholar 

  • GORDON, A. L., HUXLEY, A. F. & JULIAN, F. J. (1966) The variation of isometric tension with sarcomere length in vertebrate muscle fibres.J. Physiol. 184, 170–92.

    PubMed  Google Scholar 

  • GORZA, L. (1990) Identification of a novel type 2 fiber population in mammalian skeletal muscle by combined use of histochemical myosin ATPase and anti-myosin monoclonal antibodies.J. Histochem. Cytochem. 38, 257–65.

    PubMed  Google Scholar 

  • HIBBERD, M. G. & TRENTHAM, D. R. (1986) Relationships between chemical and mechanical events during muscular contraction.Ann. Rev. Biophys. Chem. 15, 119–61.

    Google Scholar 

  • Jonges, G. N., Van Noorden, C. J. F. & Lamers, W. H. (1992)In situ kinetic parameters of glucose-6-phosphatase in rat liver lobutus.J. Biol. Chem. (in press).

  • KELLY, A. M., ROSSER, B. W. C., HOFFMAN, R.,PAnattieri, R. A., SCHIAFFINO, S., Rubinstein, N. A. & Nemeth, P. M. (1991) Metabolic and contractile protein expression in developing rat diaphragm muscle.J. Neurosci. 11, 1231–42.

    PubMed  Google Scholar 

  • KUREBAYASHI, N. & OGAWA, Y. (1986) Characterization of increased Ca2+ efflux by quercetin from the sarcoplasmic reticulum of frog skinned skeletal muscle fibers.J. Muscle Res. Cell Motil. 7, 142–50.

    PubMed  Google Scholar 

  • LA FRAMBOISE, W. A., DAOOD, M. J., Guthrie, R. D., BUTLER-BROWNE, G. S., WHALEN, R. G. & ONTELL, M. (1990) Myosin isoform in neonatal rat extensor digitorum longus, diaphragm, and soleus muscles.Am. J. Physiol. 259, L116–22.

    PubMed  Google Scholar 

  • LABORDE, K., BUSSIERES, L., DE SMET, A., DECHAUX, M. & SACHS, C. (1990) Quantification of renal Na−K-ATPase activity by image analysing system.Cytometry 11, 859–68.

    PubMed  Google Scholar 

  • LEHRINGER, A. L. (1975)Biochemistry 2nd edition. New York: Worth.

    Google Scholar 

  • LEWIS, M. I., SIECK, G. C., FOURNIER, M. & BELMAN, M. J. (1986) Effect of nutritional deprivation on diaphragm contractility and muscle fiber size.J. Appl. Physiol. 60, 596–603.

    PubMed  Google Scholar 

  • MARECHAL, G., ScHWARTZ, K., BECKERS-BLEUK, G. & GHINS, E. (1984) Isozymes of myosin in growing and regenerating rat muscles.Eur. J. Biochem. 138, 421–8.

    PubMed  Google Scholar 

  • MEIJER, A. E. F. H. (1970) Histochemical method for the demonstration of myosin adenosine triphosphatase in muscle tissues.Histochemie 22, 51–8.

    PubMed  Google Scholar 

  • NWOYE, L., MOMMAERTS, W. F. H. M., SIMPSON, D. R., SERAYDERIAN, K. & Marusich, M. (1982) Evidence for a direct action of thyroid hormone in specifying muscle properties.Am. J. Physiol. 242, R401–8.

    PubMed  Google Scholar 

  • Pastra-Landis, S. C. & Lowey, S. (1986) Myosin subunit interactions. Properties of the 19000-dalton light chain-deficient myosin.J. Biol. Chem. 261, 14811–6.

    PubMed  Google Scholar 

  • PIEROBON-BORMIOLI, S., SARTORE, S., DALLA LIBERA, L., VITADELLO, M. & Schiaffino, S. (1981) Fast' isomyosins and fiber types in mammalian skeletal muscle.J. Histochem. Cytochem. 29, 1179–88.

    PubMed  Google Scholar 

  • REISER, P. J., MOSS, R. L., GIULIAN, G. G. & GREASER, M. L. (1985) Shortening velocity in single fibers from adult rabbit soleus muscles is correlated with myosin heavy chain composition.J. Biol. Chem. 260, 9077–80.

    PubMed  Google Scholar 

  • ROOMANS, G. M. & WROBLEWSKI, R. (1982) Quantitative x-ray microanalysis of spleen lysosomes after acid phosphatase reaction.Histochemistry 75, 485–91.

    PubMed  Google Scholar 

  • SCHAUB, M. C. & ERMINI, M. (1969) Effect of bivalent cations on the adenosine triphosphatase of actomyosin and its modification by tropomyosin and troponin.Biochem. J. 111, 777–83.

    PubMed  Google Scholar 

  • SCHAUB, M. C., JAUCH, A., WALZTHOENY, D. & WALLIMANN, T. (1986) Myosin light chain functions.Biomed. Biochim. Acta 45, S39–45.

    Google Scholar 

  • SCHIAFFINO, S., AUSONI, S., GORZA, L., SAGGIN, L., GUNDERSEN, K. & LOMO, T. (1988) Myosin heavy chain isoforms and velocity of shortening of type 2 skeletal muscle fibres.Acta Physiol. Scand. 134, 575–6.

    PubMed  Google Scholar 

  • SCHIAFFINO, S., GORZA, L., SARTORE, S., SAGGIN, L., AUSONI, S., VIANELLO, M., Gundersen, K. & Lomo, T. (1989) Three myosin heavy chain isoforms in type 2 skeletal muscle fibres.J. Muscle Res. Cell Motil. 10, 197–205.

    PubMed  Google Scholar 

  • SIECK, G. C., FOURNIER, M. & ENAD, J. G. (1989) Fiber type composition of muscle units in the cat diaphragm.Neurosci. Lett. 97, 29–34.

    PubMed  Google Scholar 

  • SIECK, G. C., CHEUNG, T. C. & BLANCO, C. E. (1991) Diaphragm capillarity and oxidative capacity during postnatal development.J. Appl. Physiol. 70, 103–11.

    PubMed  Google Scholar 

  • SIECK, G. C., SACKS, R. D., BLANCO, C. E. & EDGERTON (1986) SDH activity and cross sectional area of muscle fibres in cat diaphragm.J. Appl. Physiol. 60, 1284–92.

    PubMed  Google Scholar 

  • SIEKEVITZ, Z. P., LOW, H., ERNSTER, L. & LINDBERG, O. (1958) On a possible mechanism of the adenosine triphosphatase of liver mitochondria.Biochem. Biophys. Acta 29, 378–91.

    PubMed  Google Scholar 

  • SIVARAMAKRISHNAN, M. & BURKE, M. (1982) The free heavy chain of vertebrate skeletal myosin subfragment-1 shows full enzymatic activity.J. Biol. Chem. 257, 1102–1105.

    PubMed  Google Scholar 

  • SMITH, E. L., HILL, R. L., LEHMAN, I. R., LEFKOWITZ, R. J., HANDLER, P. & WHITE, A. (1983)Principles of Biochemistry: General Aspects. 7th edn, pp. 179–209. New York: McGraw-Hill Book Co.

    Google Scholar 

  • STOWARD, P. J. (1980) Criteria for the validation of quantitative histochemical techniques. InTrends in Enzyme Histochemistry and Cytochemistry (edited byEvered, D. & O'Connor, M.) pp. 11–31. Amsterdam: Excerpta Medica.

    Google Scholar 

  • SWEENEY, H. L., Kushmerick, M. J. & Mabuchi, K. (1986) Velocity of shortening and myosin isozymes in two types of rabbit fast-twitch muscle fibers.Am. J. Physiol. 251, C431–4.

    PubMed  Google Scholar 

  • TERMIN, A., Staron, R. S. & Pette, D. (1989) Myosin heavy chain isoforms in histochemically defined fiber types of rat muscles.Histochem. 92, 453–7.

    Google Scholar 

  • THOMASON, D. B., Baldwin, K. M. & Herrick, R. E. (1986) Myosin isozyme distribution in rodent hindlimb skeletal muscle.J. Appl. Physiol. 60, 1923–31.

    PubMed  Google Scholar 

  • TSIKA, R. W., HERRICK, R. E. & BALDWIN, K. M. (1987) Subunit composition of rodent isomyosins and their distribution in hindlimb skeletal muscles.J. Appl. Physiol. 63, 2101–10.

    PubMed  Google Scholar 

  • VAN DER LAARSE, W. J., DIEGENBACH, P. C. & MASLAM, S. (1984) Quantitative histochemistry of three mouse hind-limb muscles: the relationship between calcium-stimulated myofibrillar ATPase and succinate dehydrogenase activities.Histochem. J. 16, 529–41.

    PubMed  Google Scholar 

  • VAN DER LAARSE, W. J., DIEGENBACH, P. C. & HEMMINGA, M. A. (1986) Calcium-stimulated myofibrillar ATPase activity correlates with shortening velocity of muscle fibres inXenopus laevis.Histochem. J. 18, 487–96.

    PubMed  Google Scholar 

  • Van Noorden, C. J. F. & Jonges, G. N. (1992) Molecular extinction coefficients of lead sulphide and polymerized diaminobenzidine as final reaction products of histochemical reactions.Cytometry (in press).

  • WAGNER, P. D. & GINIGER, E. (1981) Hydrolysis of ATP and reversible binding to F-actin by myosin heavy chains free of all light chains.Nature 292, 560–2.

    PubMed  Google Scholar 

  • WAGNER, P. D. & WEEDS, A. G. (1977) Studies on the role of myosin alkali light chains. Recombination and hydridization of light chains and heavy chains in subfragment-1 preparations.J. Mol. Biol. 109, 455–73.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blanco, C.E., Sieck, G.C. Quantitative determination of calcium-activated myosin adenosine triphosphatase activity in rat skeletal muscle fibres. Histochem J 24, 431–444 (1992). https://doi.org/10.1007/BF01089105

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01089105

Keywords

Navigation