Skip to main content
Log in

There large inversions in the chloroplast genomes and one loss of the chloroplast generps16 suggest an early evolutionary split in the genusAdonis (Ranunculaceae)

  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

Detailed chloroplast DNA restriction site maps for two species in the genusAdonis (Ranunculaceae),A. annua andA. vernalis, were constructed using single and double digests and the sizes of these genomes are 151.3 and 156.5 kilobases, respectively. Three inversions were found inAdonis, relative to the gene order in the majority of land plants. These rearrangements represent two different gene orders and mark an ancient split in the evolutionary history of this genus. Gene probes were used in order to map the endpoints of the inversions and the inverted repeat regions. The inverted repeat is approximately 400 base pairs shorter inA. annua than inA. vernalis. Two inversions, 39 kilobases and 24 kilobases in size, occur inA. annua and one inversion, 42 kilobases in size, is present in the remaining investigated species ofAdonis. The generps16 is absent from the chloroplast genome inAdonis annua. Restriction sites for eleven restriction endonucleases were mapped forA. annua, A. vernalis and four additional species ofAdonis and two species ofTrollius. Eighty-six phylogenetically informative sites were analysed cladistically in order to evaluate the main clades withinAdonis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bremer K. (1988) The limits of amino acid sequence data in angiosperm phylogenetic reconstruction. Evolution 42: 795–803.

    Google Scholar 

  • Castroviejo S., Laínz M., López González G., Montserrat P., Muñoz Garmendia F., Paiva J., Villar L. (eds.) (1986) Flora Iberica. Plantas vasculares de la Península Ibérica e Islas Baleares. Lycopodiaceae-Papaveraceae. Real Jardín Botánico, C.S.I.C., Madrid.

    Google Scholar 

  • Chrtek J., Slavíková Z. (1978) Gliederung der Gattung Adonis in drei Gattungen. Preslia 50: 22–25.

    Google Scholar 

  • Clarke A.K., Gustafsson P., Lidholm J. Å. (1994) Identification and expression of the chloroplastclpP gene in the coniferPinus contorta. Pl. Molec. Biol. 26: 851–862.

    Google Scholar 

  • Cosner M. E., Jansen R. K., Palmer J. D., Downie S. R., (1997) The highly rearranged chloroplast genome ofTrachelium caeruleum (Campanulaceae): multiple inversions, inverted repeat expansion and contraction, transposition, insertions/deletions, and several repeat families. Curr. Genet. 31: 419–429.

    PubMed  Google Scholar 

  • Downie S. R., Palmer J. D. (1992) Use of chloroplast DNA rearrangements in reconstructing plant phylogeny. In: Soltis P. S., Soltis D. E., Doyle J. J. (eds.) Molecular systematics of plants. Chapman and Hall, New York, pp. 14–35.

    Google Scholar 

  • Downie S. R., Palmer J. D. (1994) A chloroplast DNA phylogeny of the Caryophyllales based on structural and inverted repeat restriction site variation. Syst. Bot. 19: 236–252.

    Google Scholar 

  • Downie S. R., Olmstead R. G., Zurawski G., Soltis D. E., Soltis P. S., Watson J. C., Palmer J. D. (1991) Six independent losses of the chloroplast DNArpl2 intron in dicotyledons: molecular and phylogenetic implications. Evolution 45: 1245–1259.

    Google Scholar 

  • Downie S. R., Katz-Downie D. S., Wolfe K. H., Calie P. J., Palmer J. D (1994) Structure and evolution of the largest chloroplast gene (ORF2280): internal plasticity and multiple gene loss during angiosperm evolution. Curr. Genet. 25: 367–378.

    PubMed  Google Scholar 

  • Downie S. R., Llanas E., Kats-Downie D. S. (1996) Multiple independent losses of therpoC1 intron in angiosperm chloroplast DNA 's. Syst. Bot. 221: 135–151.

    Google Scholar 

  • Doyle J. J., Doyle J. L. (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. 19: 11–15.

    Google Scholar 

  • Doyle J. J., Davis J. I., Soreng R. J., Garvin D., Anderson M. J. (1992) Chloroplast DNA inversions and the origin of the grass family (Poaceae). Proc. Natl. Acad. Sci. USA 89: 7722–7726.

    PubMed  Google Scholar 

  • Doyle J. J., Doyle J. L., Palmer J. D. (1995) Multiple independent losses of two genes and one intron from legume chloroplast genomes. Syst. Bot. 20: 272–294.

    Google Scholar 

  • Doyle J. J., Doyle J. L., Ballenger J. A., Palmer J. D. (1996) The distribution and phylogenetic significance of a 50-kb chloroplast DNA inversion in the flowering plant familyLeguminosae. Molec. Phylogenet. Evol. 5: 429–438.

    PubMed  Google Scholar 

  • Felsenstein J. (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783–791.

    Google Scholar 

  • Hachtel W., Neuss A., Stein J. vom (1991) A chloroplast DNA inversion marks an evolutionary split in the genusOenothera. Evolution 45: 1050–1052.

    Google Scholar 

  • Heyn C. C., Pazy B. (1989) The annual species ofAdonis (Ranunculaceae) — a polyploid complex. Plant Syst. Evol. 168: 181–193.

    Google Scholar 

  • Hiratsuka J., Shimada H., Whittier R., Ishibashi T., Sakamoto M., Mori M., Kondo C., Honji Y., Sun C.-R., Meng B-Y., Li Y.-Q., Kanno A., Nishizawa Y., Hirai A., Shinozaki K., Sugiura M. (1989) The complete sequence of the rice (Oryza sativa) chloroplast genome: intermolecular recombination between distinct tRNA genes accounts for a major plastid DNA inversion during the evolution of the cereals. Molec. Gen. Genet. 217: 185–194.

    PubMed  Google Scholar 

  • Hoot S. B. (1995) Phylogeny of theRanunculaceae based on preliminaryatpB,rbcL and 18S nuclear ribosomal DNA sequence data. Plant Syst. Evol., Suppl. 9: 241–251.

    Google Scholar 

  • Hoot S. B., Palmer J. D. (1994) Structural rearrangements, including parallel inversion, within the chloroplast genome ofAnemone and related genera. J. Molec. Evol. 38: 274–281.

    PubMed  Google Scholar 

  • Howe C. J. (1985) The endpoints of an inversion in wheat chloroplast DNA are associated with short repeated sequences containing homology toatt-lambda. Curr. Genet. 10: 139–145.

    PubMed  Google Scholar 

  • Howe C. J., Barker R. F., Bowman C. M., Dyer T. A. (1988) Common features of three inversions in wheat chloroplast DNA. Curr. Genet. 13: 343–349.

    PubMed  Google Scholar 

  • Johansson J. T. (1995) A revised chloroplast DNA phylogeny of theRanunculaceae. Plant Syst. Evol., Suppl. 9: 253–261.

    Google Scholar 

  • Johansson J. T., Jansen R. K. (1991) Chloroplast DNA variation among five species ofRanunculaceae: structure, sequence divergence, and phylogenetic relationships. Plant Syst. Evol. 178: 9–25.

    Google Scholar 

  • Johansson J. T., Jansen R. K. (1993) Chloroplast DNA variation and phylogeny of theRanunculaceae. Plant Syst. Evol. 187: 29–49.

    Google Scholar 

  • Kanno A., Hirai A. (1993) A transcription map of the chloroplast genome from rice (Oryza sativa). Curr. Genet. 23: 166–174.

    PubMed  Google Scholar 

  • Knox E. B., Downie S. R., Palmer J. D. (1993) Chloroplast genome rearrangements and the evolution of giant lobelias from herbaceous ancestors. Molec. Biol Evol. 10: 414–430.

    Google Scholar 

  • Kohchi T., Ogura Y., Umesono K., Yamada Y., Komano T., Ohyama K. (1988) Ordered processing and splicing in a polycistronic stranscript in liverwort chloroplasts. Curr. Genet. 14: 147–154.

    PubMed  Google Scholar 

  • Komarov V. L. (ed.) (1970) Flora of the U.S.S.R. (Flora SSSR). 7.Ranales andRhoeadales. Translated from Russian. Moskow, Leningrad: Botanical Institute of the Academy of Sciences of the U.S.S.R.

    Google Scholar 

  • Milligan B. G., Hampton J. N., Palmer J. D. (1989) Dispersed repeats and structural re-organization in sub-clover chloroplast DNA. Molec. Biol. Evol. 6: 355–368.

    PubMed  Google Scholar 

  • Ogihara Y., Terachi T., Sasakuma T. (1988) Intramolecular recombination of chloroplast genome mediated by short direct-repeat sequences in wheat species. Proc. Natl. Acad. Sci. USA 85: 8573–8577.

    PubMed  Google Scholar 

  • Palmer J. D. (1986) Isolation and structural analysis of chloroplast DNA. Meth. Enzymol. 118: 167–186.

    Google Scholar 

  • Palmer J. D. (1991) Plastid chromosomes: structure and evolution. In: Bogorad L., Vasil I. K. (eds.) Cell culture and somatic cell genetics in plants, 7. The molecular biology of plastids. Academic Press, New York, pp. 5–53.

    Google Scholar 

  • Palmer J. D., Osorio B., Thompson W. F. (1988) Evolutionary significance of inversions in legume chloroplast DNAs. Curr. Genet. 14: 65–74.

    Google Scholar 

  • Ro K.-E., Keener C. S., McPheron B. A. (1997) Molecular phylogenetic study of theRanunculaceae: utility of the nuclear 26S ribosomal DNA in inferring intrafamilial relationships. Molec. Phylogenet. Evol. 8: 117–127.

    PubMed  Google Scholar 

  • Santisuk T. (1979) A palynological study of the tribeRanunculeae (Ranunculaceae). Opera Bot. 48: 1–74.

    Google Scholar 

  • Shinozaki K., Ohme M., Tanaka M., Wakasugi T., Hayashida N., Matsubayashi T., Zaita N., Chunwongse J., Obokata J., Yamaguchi-Shinozaki K., Ohto C., Torazawa K., Meng B. Y., Sugita M., Deno H., Kamogashira T., Yamada K., Kusuda J., Takaiwa F., Kato A., Tohdoh N., Shimada H., Sugiura M. (1986) The complete nucleotide sequence of the tobacco chloroplast genome: its gene organization and expression. EMBO J. 5: 2043–2049.

    Google Scholar 

  • Strid A. (1986)Adonis. In: Strid A. (ed.) Mountain flora of Greece, 1. Cambridge, Cambridge University Press, pp. 209–210.

    Google Scholar 

  • Sugiura M., Zaita N., Kusuda M., Kumano M. (1986) Clone bank of the tobacco (Nicotiana tabacum) chloroplast genome as a set of overlapping restriction endonuclease fragments: mapping of eleven ribosomal protein genes. Pl. Sci. 44: 211–216.

    Google Scholar 

  • Swofford D. L. (1993) PAUP. Phylogenetic analysis using parsimony, version 3.1.1 for Macintosh Computer package. Illinois Natural History Survey, Champaign, Illinois.

    Google Scholar 

  • Swofford D. L. Olsen G. J., Waddell P. J., Hillis, D. M., (1996) Phylogenetic inference. In: Hillis D. M., Mortiz C., Mable B. K. (eds.) Molecular systematics, 2nd edn. Sinauer, Sunderland, MA, pp. 407–514.

    Google Scholar 

  • Tamura M. (1993)Ranunculaceae. In: Kubitzki K., Rohwer, J. G., Bittrich, V. (eds.) The families and genera of vascular plants. 2. Flowering plants. Dicotyledons. Magnoliid, hamamelid and caryophyllid families. Springer, Berlin Heidelberg New York, pp. 563–583.

    Google Scholar 

  • Tsal C.-H., Strauss S. H. (1989) Dispersed repetitive sequences in the chloroplast genome of Douglas-fir. Curr. Genet. 16: 211–218.

    PubMed  Google Scholar 

  • Tutin T. G. Akeroyd J. R. (1993)Adonis L. In: Tutin T. G., Burges N. A., Chater A. O., Edmondson J. R., Heywood V. H., Moore D. M., Valentine D. H., Walters S. M., Webb D. A. (eds.) Flora Euopeaea, 2nd edn., 1, Cambridge University Press, Cambridge, pp. 267–269.

    Google Scholar 

  • Watrous L. E., Wheeler Q. D. (1981) The out-group comparison method of character analysis. Syst. Zool. 30: 1–11.

    Google Scholar 

  • Weglöhner W., Subramanian A. R., (1992) Nucleotide sequence of a region of maize chloroplast DNA containing the 3′ end ofclpP, exon 1 ofrps12 andrpl20 and their cotranscription. Pl. Molec. Biol. 18: 415–418.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johansson, J.T. There large inversions in the chloroplast genomes and one loss of the chloroplast generps16 suggest an early evolutionary split in the genusAdonis (Ranunculaceae) . Pl Syst Evol 218, 133–143 (1999). https://doi.org/10.1007/BF01087041

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01087041

Key words

Navigation