Skip to main content
Log in

Evolutionary adaptation and stress: Energy budgets and habitats preferred

  • Published:
Behavior Genetics Aims and scope Submit manuscript

Abstract

Natural populations are normally exposed to substantial environmental stress. The consequences of stress include elevated metabolic costs and additive genetic variability. From the former, preferred habitats should be located in environments corresponding to minimum total energy expenditure. This tendency occurs in the field for behavioral adaptation ofDrosophila to variable temperature (and humidity) conditions. Laboratory studies of resource preference inDrosophila suggest a low genetic variability. However, under more stressful field conditions, genetic variability should be higher. Habitat preference studies under stressful conditions therefore need to be emphasized in modeling situations in nature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ames, D. (1980). Thermal environment affects production efficiency of livestock.BioScience 30:457–460.

    Google Scholar 

  • Arking, R., Buck, S., Wells, R. A., and Pretzalff, R. (1988). Metabolic rates in genetically based long lived strains ofDrosophila.Exp. Gerontol. 23:59–76.

    PubMed  Google Scholar 

  • Atkinson, D. E. (1977).Cellular Energy Metabolism and its Regulation, Academic Press, New York.

    Google Scholar 

  • Atkinson, W. D. (1981). An ecological interaction between citrus fruit,Penicillium moulds andDrosophila immigrans Sturtevant (Diptera: Drosophilidae).Ecol. Entomol. 6:339–344.

    Google Scholar 

  • Barros, A. R., Sierra, L. M., and Commendador, M. A. (1991). Decreased metabolic rate as an acrolein resistance mechanism inDrosophila melanogaster.Behav. Genet. 21:441–451.

    Google Scholar 

  • Boulétreau-Merle, J., Fouillet, P., and Terrier, O. (1987). Seasonal variations and balanced polymorphisms in the reproductive potential of temperateD. melanogaster populations.Entomol. Exp. Appl. 43:39–48.

    Google Scholar 

  • Buchan, P. B., and Sohal, R. S. (1981). Effect of temperature and different sex ratios on physical activity and life span in the adult housefly,Musca domestica.Exp. Gerontol. 3:223–228.

    Google Scholar 

  • Burnet, B., Connolly, K., and Mallinson, M. (1974). Activity and sexual behavior of neurological mutants inDrosophila melanogaster.Behav. Genet. 4:227–235.

    PubMed  Google Scholar 

  • Bush, G. L., and Howard, D. J. (1986). Allopatric and nonallopatric speciation: Assumptions and evidence. In Karlin, S., and Nevo, E. (eds),Evolutionary processes and Theory, Academic Press, New York, pp. 411–438.

    Google Scholar 

  • David, J. R., Allemand, R., van Herreweg J., and Cohet, Y. (1983). Ecophysiology: Abiotic factors. In Ashburner, M., Carson, H. L., and Thompson, J. N., Jr. (eds),The Genetics and Biology of Drosophila, Vol. 3d, Academic Press, London, pp. 106–170.

    Google Scholar 

  • De Kruijf, H. A. M. (1991). Extrapolation through hierarchical levels.Comp. Biochem. Physiol. 100C:291–299.

    Google Scholar 

  • Derr, J. A. (1980). The nature of variation in life history characters ofDysdercus bimaculatus (Heteroptera: Pyrrhocoridae), a colonizing species.Evolution 34:548–557.

    Google Scholar 

  • Diehl, S. R., and Bush, G. L. (1989). The role of habitat preference in adaptation and speciation. In Otte, D., and Endler, J. A. (eds.),Speciation and its Consequences, Sinauer, Sunderlan, MA, pp. 345–365.

    Google Scholar 

  • Feder, J. L., Chilcote, C. A., and Bush, G. L. (1988). Genetic differentiation between sympatric host races of the apple maggot flyRhagoletis pomonella.Nature 336:61–64.

    Google Scholar 

  • Fitt, G. P. (1986). The influence of a shortage of hosts on the specificity of oviposition behavior in species ofDacus (Diptera, Tephritidae).Physiol. Entomol. 11:133–143.

    Google Scholar 

  • Fulker, D. W. (1966). Mating speed in PitDrosophila melanogaster: A psychogenetic analysis.Science 133:203–205.

    Google Scholar 

  • Futuyma, D. (1989). Macroevolutionary consequences of speciation: Inferences from phytophagous insects. In Otte, D., and Endler, J. A. (eds.),Speciation and its Consequences, Sinauer, Sunderland, MA, pp. 557–578.

    Google Scholar 

  • Futuyma, D. J., and Peterson, S. C. (1985). Genetic variation in the use of resources by insects.Annu. Rev. Entomol. 30:217–238.

    Google Scholar 

  • Grant, P. R., and Grant, B. R. (1989). Sympatric speciation and Darwin's finches. In Otte, D., and Endler, J. A. (eds.),Speciation and its Consequences, Sinauer, Sunderland, MA, pp. 433–457.

    Google Scholar 

  • Henderson, N. D. (1979). Adaptive significance of animal behavior: The role of gene-environment interaction. In Royce, J. R., and Mos, L. (eds.)Theoretical Advances in Behavior Genetics, Alphen den Rijn The Netherlands, pp. 243–284.

  • Henderson, N. D. (1981). Genetic influences on locomotor activity in 11-day-old housemice.Behav. Genet. 11:209–225.

    PubMed  Google Scholar 

  • Hochachka, P. W., and Somero, G. N. (1984).Biochemical Adaptation, Princeton University Press, Princeton, NJ.

    Google Scholar 

  • Hoffmann, A. A. (1985). Interspecific variation in the response ofDrosophila to chemicals and fruit odours in a wind tunnel.Aust. J. Zool..33:451–460.

    Google Scholar 

  • Hoffmann, A. A., and O'Donnell, S. (1990). Heritable variation in resource use inDrosophila in the field. In Barker, J. S. F., Starmer, W. F., and MacIntyre, R. J. (eds.),Ecological and Evolutionary Genetics of Drosophila, Plenum Press, New York, pp. 177–193.

    Google Scholar 

  • Hoffmann, A. A., and Parsons, P. A. (1989a). An integrated approach to environmental stress tolerance and life-history variation. Desiccation tolerance inDrosophila.Biol. J. Linn. Soc. 37:117–136.

    Google Scholar 

  • Hoffmann, A. A., and Parsons, P. A. (1989b). Selection for increased desiccation resistance inDrosophila melanogaster: additive genetic control and correlated response for other stresses.Genetics 122:837–845.

    PubMed  Google Scholar 

  • Hoffmann, A. A., and Parsons, P. A. (1991).Evolutionary Genetics and Environmental Stress, Oxford University Press, Oxford.

    Google Scholar 

  • Hoffmann, A. A., and Parsons, P. A. (1992). Selection for adult desiccation resistance inDrosophila melanogaster: Fitness components, larval resistance and stress correlations.Biol. J. Linn. Soc. 48:43–54.

    Google Scholar 

  • Hoffmann, A. A., and Turelli, M. (1985). Distribution ofDrosophila melanogaster on alternative resources: Effects of experience and starvation.Am. Nat. 126:662–679.

    Google Scholar 

  • Hoffmann, A. A., Nielsen, K. M., and Parsons, P. A. (1984). Spatial variation of biochemical and ecological phenotypes inDrosophila: Electrophoretic and quantitative variation.Dev. Genet. 4:439–450.

    Google Scholar 

  • Holloway, G. J., Sibly, R. M., and Povey, S. R. (1990). Evolution in toxin-stressed environments.Funct. Ecol. 4:289–294.

    Google Scholar 

  • Homyk, T., Szidonya, J., and Suzuki, D. T. (1980). Behavioral mutants ofDrosophila melanogaster. III. Isolation and mapping of mutations by direct visual observations of behavioral phenotypes.Mol. Gen. Genet. 177:553–565.

    PubMed  Google Scholar 

  • Houle, D. (1992). Comparing evolvability and variability of quantitative traits.Genetics 130:185–204.

    Google Scholar 

  • Huey, R. B. (1991). Physiological consequences of habitat selection.Am. Nat. 137:S91-S115.

    Google Scholar 

  • Jaenike, J. (1990). Factors maintaining genetic variation for host preference inDrosophila. In Barker, J. S. F., Starmer, W. F., and MacIntyre, R. J. (eds.),Ecological and Evolutionary Genetics of Drosophila, Plenum Press, New York, pp. 195–207.

    Google Scholar 

  • Jaenike, J., and Holt, R. D. (1991). Genetic variation for habitat preference: Evidence and explanations.Am. Nat. 137:S66-S90.

    Google Scholar 

  • Jones, J. S., Coyne, J. A., and Partidge, L. (1987). Estimation of thermal niche ofDrosophila melanogaster using a temperature-sensitive mutation.Am. Nat. 130:83–90.

    Google Scholar 

  • Kohane, M. J., and Parsons, P. A. (1986). Environment-dependent fitness differences inDrosophila melanogaster: temperature, domestication and the alcohol dehydrogenase locus.Heredity 57:289–304.

    Google Scholar 

  • Kohane, M. J., and Parsons, P. A. (1987). Mating ability in laboratory-adapted and field-derivedDrosophila melanogaster: the stress of domestication.Behav. Genet. 17:541–558.

    PubMed  Google Scholar 

  • Miquel, J., Lundgren, P. R., Bensch, K. G., and Atlan, H. (1976). Effects of temperature on the life span, vitality and fine structure ofDrosophila melanogaster.Mech. Age. Dev. 5:347–370.

    Google Scholar 

  • Obin, M. S., Van der Meer, R. K., and Ehrman, L. (1988). Sexual behavior. In Lints, F. A., and Soliman, M. H., (eds.),Drosophila as a Model Organism for Ageing Studies, Blackie, Glasgow, pp. 140–150.

    Google Scholar 

  • Parsons, P. A. (1974a). Genetics of resistance to environmental stresses inDrosophila populations.Annu. Rev. Genet. 7:234–263.

    Google Scholar 

  • Parsons P. A. (1974b). Male mating speed as a component of fitness inDrosophila.Behav. Genet. 4:395–404.

    PubMed  Google Scholar 

  • Parsons, P. A. (1975). The effect of temperature and humidity on the distribution patterns ofDrosophila inornata in Victoria, Australia.Environ. Entomol. 4:961–964.

    Google Scholar 

  • Parsons, P. A. (1982). Acetic acid vapour as a resource and stress inDrosophila.Aust. J. Zool. 30:427–433.

    Google Scholar 

  • Parsons, P. A. (1983). Ecobehavioral genetics: Habitats and colonists.Annu. Rev. Ecol. Syst. 14:35–55.

    Google Scholar 

  • Parsons, P. A. (1987). Evolutionary rates under environmental stress.Evol. Biol. 21:311–347.

    Google Scholar 

  • Parsons, P. A. (1988a). Evolutionary rates: Effects of stress upon recombination.Biol. J. Linn. Soc. 35:49–68.

    Google Scholar 

  • Parsons, P. A. (1988b). Behavior, stress and variability.Behav. Genet. 18:293–308.

    PubMed  Google Scholar 

  • Parsons, P. A. (1991a). Evolutionary rates: Stress and species boundaries.Annu. Rev. Ecol. Syst. 22:1–18.

    Google Scholar 

  • Parsons, P. A. (1991b). Can atmospheric pollution be monitored from the longevity of stress-sensitive behavioural mutants inDrosophila? Funct. Ecol. 5:713–715.

    Google Scholar 

  • Parsons, P. A. (1992a). Fluctuating asymmetry: A biological monitor of environmental and genomic stress.Heredity 68:361–364.

    PubMed  Google Scholar 

  • Parsons, P. A. (1992b). Evolutionary adaptation and stress: the fitness gradient.Evol. Biol. 26:191–223.

    Google Scholar 

  • Phillips, J. P., and Hilliker, A. J. (1990). Genetic, analysis of oxygen defense mechanisms inDrosophila melanogaster.Adv. Genet. 28:43–71.

    PubMed  Google Scholar 

  • Prince, G. J., and Parsons, P. A. (1980). Resource utilization specificity in three cosmopolitanDrosophila species.J. Nat. Hist. 14:559–563.

    Google Scholar 

  • Rose, M. R. (1991).Evolutionary Biology of Aging, Oxford University Press, New York.

    Google Scholar 

  • Ruiz, A., and Heed, W. B. (1988). Host-plant specificity in the cactophilicDrosophila mulleri species complex.J Anim. Ecol. 57:237–249.

    Google Scholar 

  • Sibly, P. M., and Calow, P. (1989). A life-cycle theory of responses to stress.Biol. J. Linn. Soc. 37:101–116.

    Google Scholar 

  • Sohal, R. S. (1986). The rate of living theory: A contemporary interpretation. In Collatz, K.-G., and Sohal, R. S. (eds.),Insect Aging, Springer-Verlag, Berlin, pp. 23–44.

    Google Scholar 

  • Sohal, R. S., and Runnels, J. H. (1986). Effect of experimentally prolonged life span on flight performance of houseflies.Exp. Geront. 21:509–514.

    Google Scholar 

  • Sokolowski, M. B., Bauer, S. J., Wai-Ping, V., Rodriguez, L., Wong, J. L., and Kent, C. (1986). Ecological genetics and behaviour ofDrosophila melanogaster larvae in nature.Anim. Behav. 34:403–408.

    Google Scholar 

  • Trout, W. E., and Hanson, G. P. (1971). The effect of Los Angeles smog on the longevity of normal and hyperkineticDrosophila melanogaster.Genetics 68:s69.

    Google Scholar 

  • Trout, W. E., and Kaplan, W. D. (1970). A relation between longevity, metabolic rate, and activity in shaker mutants ofDrosophila melanogaster.Exp. Gerontol 5:83–92.

    PubMed  Google Scholar 

  • Via, S. (1990). Ecological genetics and host adaptation in herbivorous insects: The experimental study of evolution in natural and agricultural systems.Annu. Rev. Entomol. 35:421–446.

    PubMed  Google Scholar 

  • Wcislo, W. T. (1989). Behavioral environments and evolutionary change.Annu. Rev. Ecol. Syst. 20:37–169.

    Google Scholar 

  • Westerman, J. M., and Parsons, P. A. (1973). Variation in genetic architecture at different doses of γ-radiation as measured by longevity inDrosophila melanogaster.Can. J. Genet. Cytol. 15:289–298.

    PubMed  Google Scholar 

  • Zotin, A. I. (1990).Thermodynamic Bases of Biological Processes: Physiological Reactions and Adaptations, Walter de Gruyter, Berlin.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parsons, P.A. Evolutionary adaptation and stress: Energy budgets and habitats preferred. Behav Genet 23, 231–238 (1993). https://doi.org/10.1007/BF01082460

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01082460

Key Words

Navigation