Skip to main content
Log in

Refinement of the crystal structure of wöhlerite

Verfeinerung der Kristallstruktur des Wöhlerits

  • Published:
Mineralogy and Petrology Aims and scope Submit manuscript

Summary

The crystal structure of wöhlerite (monoclinicP21,a=10.823(3,b=10.244(3),c=7.290(2) Å, β=109.00(4)o) was refined using 2343 independent diffractions toR 1=0.019 andR 2=0.025.

The refinement confirms the main features of the structure model proposed byShibayeva andBelov (1962), namely the walls of large cation polyhedra interconnected as in cuspidine, with Si2O7 groups linked to the polyhedra. At difference from the structure proposed by the quoted authors, both the Si2O7 groups are clinging to edges of calcium polyhedra.

The cation distribution in the polyhedral walls and the location of fluorine anions are clarified and discussed, resulting in the following crystal chemical formula Na4(Ca7.48Mn0.20Fe0.32)Zr2(Nb1.6Ti0.4) (Si2O7)4O4F2(O1.6F0.4).

Zusammenfassung

Die Kristallstruktur des Wöhlerits (monoklinP21,a 0=10,823(3),b 0=10,244(3),c 0=7,290(2) Å, β=109,00(4)o) wurde mit 2343 unabhängigen Reflexen aufR 1=0,019 undR 2=0,025 verfeinert.

Die Verfeinerung bestätigt im wesentlichen Züge des vonShibayeva undBelov (1962) vorgeschlagenen Strukturmodells, nämlich Bänder aus den Polyedern um die großen Kationen, die — wie im Cuspidin — durch an den Polyedern hängenden Si2O7-Gruppen verknüpft sind.

Die Kationenverteilung in den Polyederbändern und die Lokalisation der Fluor-Anionen wurden aufgeklärt und werden diskutiert; es ergibt sich folgende kristallchemische Formel Na4(Ca7,48 Mn0,20Fe0,32)(Zr2(Nb1,6 Ti0,4) (Si2O7)4O4F2(O1,6F0,4).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bayer, G., 1974: Crystalchemistry of Zirconium. In: Handbook of Geochemistry (Ed.K. H. Wedepohl).40A, 1–8, Berlin-Heidelberg-New York: Springer.

    Google Scholar 

  • Belov, N. V., 1961: Crystal Chemistry of Large Cation Silicates. New York: Consultants Bureau.

    Google Scholar 

  • Choisnet, J., D. Groult, B. Raveau, andM. Gasperin, 1977: Nouvelles structures à tunnels de section pentagonale K3Nb3B2O12 et K3Ta3B2O12. Acta Cryst.B33, 1841–1845.

    Article  Google Scholar 

  • Cleve, P. T., 1890: Zeit. Krist.16, 360.

    Google Scholar 

  • Donnay, G., andR. Allmann, 1970: How to recognize O2−, OH and H2O in crystal structures determined by X-rays. Amer. Min.55, 1003–1015.

    Google Scholar 

  • Bibbs, G. V., M. M. Hamil, S. J. Louisnathan, L. S. Bartell, andHsiukang You, 1972: Correlation between Si−O bond length, Si−O−Si angle and bond overlap populations calculated using extended Huckel molecular orbital theory. Amer. Min.57, 1578–1613.

    Google Scholar 

  • Hamilton, W. C., 1959: On the isotropic temperature factor equivalent to an anisotropic temperature factor. Acta Cryst.12, 609–610.

    Article  Google Scholar 

  • —, 1965: Significance tests on the crystallographicR factor. Acta Cryst.18, 502–510.

    Article  Google Scholar 

  • International Tables for X-ray Crystallography, Vol. IV, 1974, Ed.J. A. Ibers andW. C. Hamilton. Birmingham: Kynoch Press.

    Google Scholar 

  • Li Te Yü, V. I. Simonov, andN. V. Belov, 1966: Crystal structure of niocalite. Dokl. Akad. Nauk. SSSR167, 566–569.

    Google Scholar 

  • Megaw, H. D., 1968a: A simple theory of the off-centre displacement of cations in octahedral environments. Acta Cryst.B24, 149–153.

    Article  Google Scholar 

  • —, 1968b: The thermal expansion of interatomic bonds, illustrated by experimental evidence from certain niobates. Acta Cryst.A24, 589–604.

    Article  Google Scholar 

  • North, A. C. T., D. C. Phillips, andF. Scott Mathews, 1968: A semi-empirical method of absorption correction. Acta Cryst.A24, 351–359.

    Article  Google Scholar 

  • O'Keeffe, M., andB. G. Hyde, 1978: On Si−O−Si configurations in silicates. Acta Cryst.B 34, 27–32.

    Article  Google Scholar 

  • Saburi, S., A. Kawahara, C. Henmi, I. Kusachi, andK. Kihara, 1977: The refinement of the crystal structure of cuspidine. Min. Jour.8, 286–298.

    Google Scholar 

  • Sakowski-Cowley, A. C., K. Lukaszewicz, andH. D. Megaw, 1969: The structure of sodium niobate at room temperature, and the problem of reliability in pseudosymmetric structures. Acta Cryst.B25, 851–865.

    Article  Google Scholar 

  • Shannon, R. D., andC. T. Prewitt, 1969: Effective ionic radii in oxides and fluorides. Acta Cryst.B25, 925–946.

    Article  Google Scholar 

  • Shibayeva, R. I., andN. V. Belov, 1962: Crystal structure of wöhlerite, Ca2Na(Zr, Nb) Si2O7(O, F)2. Dokl. Akad. Nauk. SSSR146, 897–900.

    Google Scholar 

  • Simonov, V. I., andN. V. Belov, 1960: Crystal structure of lavenite. Dokl. Akad. Nauk. SSSR130, 167–170.

    Google Scholar 

  • Smirnova, R. F., I. M. Rumanova, andN. V. Belov, 1955: Crystal structure of cuspidine. Zap. Vses. mineral. obshsch.87, 159.

    Google Scholar 

  • Tschernik, G., 1909: Bull. Acad. Imp. Sc. St. Petersburg3, 903.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 3 Figures

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mellini, M., Merlino, S. Refinement of the crystal structure of wöhlerite. TMPM Tschermaks Petr. Mitt. 26, 109–123 (1979). https://doi.org/10.1007/BF01081296

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01081296

Keywords

Navigation