Skip to main content
Log in

Semiparametric analysis of non-steady-state pharmacodynamic data

  • Published:
Journal of Pharmacokinetics and Biopharmaceutics Aims and scope Submit manuscript

Abstract

We present an approach to the analysis of pharmacodynamic (PD) data arising from non-steadystate experiments, meant to be used when only PD data, not pharmacokinetic (PK) data, are available. The approach allows estimation of the steady-state relationship between drug input and effect. The analysis is based on a model describing the time dependence of drug effect (E) on (unobserved) drug concentration (Ce) in an hypothetical effect compartment. The model consists of (i) a known model for the input rate of drug I(t), (ii) a parametric model; L(t, a) (a function of time t, and vector of parameters a), relating I to an observed variable X, (iii) a nonparametric model relating X to E. Ce is proportional to X. X(t) is given by I(X) * L(t, a)/AL, where L(t,α)=e −α 1 t * ∑ mk=1 , α2k e −α 2k+1 t, ∑ mk=1 α2k=1, AL=∫ 0 L(t) dt, and * indicates convolution.The nonparametric model relating X to Eis a cubic spline, a function of X and a vector of (linear) parameters β. The values of α and β are chosen to minimize the sum of squared residuals between predicted and observed E. We also describe a similar model, generalizing a previously described one, to analyze PK/PD data. Applications of the approach to different drug-effect relationships (verapamil-PR interval, hydroxazine-wheal and flare, flecainide and/or verapamil-PR, and left ventricular ejection fraction) are reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Segré. Kinetics of interaction between drugs and biological systems.Farmaco 23:907–918 (1968).

    Google Scholar 

  2. L. B. Sheiner, D. R. Stanski, S. Vozeh, R. D. Miller, and J. Ham. Simultaneous modeling of pharmacokinetics and pharmacodynamics: Application to d-tubocurarine.Clin. Pharmacol Ther. 25:358–371 (1979).

    CAS  PubMed  Google Scholar 

  3. C. J. Hull, B. H. VanBeem, K. McLeod, A. Sibbald, and M. J. Watson. A pharmacokinetic model for pancuronium.Br. J. Anaesth. 50:1113–1123 (1978).

    Article  CAS  PubMed  Google Scholar 

  4. E. Fuseau and L. B. Sheiner. Simultaneous modelling of pharmacokinetics and pharmacodynamics with a nonparametric pharmacodynamic model.Clin. Pharmacol. Ther. 35:733–741 (1984).

    Article  CAS  PubMed  Google Scholar 

  5. J. D. Unadkat, F. Bartha, and L. B. Sheiner. Simultaneous modelling of pharmacokinetics and pharmacodynamics with nonparametric kinetic and dynamic models.Clin. Pharmacol.Ther. 40:86–93 (1986).

    Article  CAS  PubMed  Google Scholar 

  6. D. Verotta and L. B. Sheiner. Simultaneous modeling of pharmacokinetics and pharmacodynamics IV: An improved algorithm.Comput. Applicat. Biosci. 3:345–349 (1987).

    CAS  Google Scholar 

  7. D. Verotta, S. Beal, and L. B. Sheiner. Semiparametric approach to pharmacokineticpharmacodynamic data.Am. J. Physiol. 256:R1005-R1010 (1989).

    CAS  PubMed  Google Scholar 

  8. P. Veng-Pedersen, J. W. Mandema, and M. Danhof. A system approach to pharmacodynamics III. An algorithm and computer program COLAPS for pharmacodynamic modeling.J. Pharm. Sci. 80:488–495 (1991).

    Article  CAS  PubMed  Google Scholar 

  9. J. W. Mandema, P. Veng-Pedersen, and M. Danhof. Estimation of amobarbital plasmaeffect site equilibration kinetics, relevance of poly-exponential conductance functions.J. Pharmacokin. Biopharm. 19: 617–634 (1991).

    Article  CAS  Google Scholar 

  10. E. R. Carson, C. Cobelli, and L. Finkelstein.The Mathematical Modeling of Metabolic and Endocrine Systems, Wiley, New York, 1983.

    Google Scholar 

  11. R. F. Hoskins.Generalized Functions, Wiley, New York, 1979.

    Google Scholar 

  12. C. DeBoor.A Practical Guide to Splines, Springer-Verlag, New York, 1978.

    Book  Google Scholar 

  13. C. J. Stone and C. Koo. Logspline density estimation.Contemp. Math. 59:1–15 (1986).

    Article  Google Scholar 

  14. D. M. Bates and D. G. Watts.Nonlinear Regression Analysis and Its Applications, Wiley, New York, 1988.

    Book  Google Scholar 

  15. H. Akaike. A new look at the statistical model identification.IEEE Trans. Automat. Contr. 19:716–723 (1974).

    Article  Google Scholar 

  16. J. B. Schwartz, D. Verotta, and L. B. Sheiner. Pharmacodynamic modelling of verapamil effects under steady-state and nonsteady-state conditions.J. Pharmacol. Exp. Ther. 251:1032–1038 (1989).

    CAS  PubMed  Google Scholar 

  17. F. Estelle, R. Simons, K. Simons, and E. M. Frith. The pharmacokinetics and antihistaminic of the H1 receptor antagonist hydroxyznine.J. Allergy Clin. Immunol. 73:69–75 (1984).

    Article  Google Scholar 

  18. J. L. Holtzman, D. Finley, L. Mottonen, D. A. Berry, B. P. Ekholm, D. C. Kvam, R. L. McQuinn, and A. M. Miller. The pharmacodynamic and pharmacokinetic interaction between single doses of flecainide acetate and verapamil: Effects on cardiac function and drug clearance.Clin. Pharmacol. Ther. 46:26–32 (1989).

    Article  CAS  PubMed  Google Scholar 

  19. D. B. Campbell. The use of kinetic-dynamic interactions in the evaluation of drugs.Psychopharmacology 100:433–450 (1990).

    Article  CAS  PubMed  Google Scholar 

  20. L. B. Sheiner. Clinical pharmacology and the choice between theory and empiricism.Clin. Pharmacol. Ther. 46:605–615 (1989).

    Article  CAS  PubMed  Google Scholar 

  21. D. Verotta and L. B. Sheiner. Parametric and semi-parametric approaches to non-steady-state pharmacokinetic and pharmacodynamic data.Biomed. Meas. Inform. Contr. 2:161–169 (1988).

    Google Scholar 

  22. P. Veng-Pedersen and W. R. Gillespie. A system approach to pharmacodynamics I: theoretical framework.J. Pharm. Sci. 77:39–47 (1988).

    Article  CAS  PubMed  Google Scholar 

  23. D. Verotta and L. B. Sheiner. Semiparametric models of the time course of drug action. In C. J. Van-Boxtel, M. Danhof, and N. H. G. Holford (eds)The In Vivo Study of Drug Action: Principles and Applications of Kinetic-Dynamic Modelling, Elsevier, Amsterdam, The Netherlands, 1991.

    Google Scholar 

  24. V. F. Smolen. Theoretical and computational basis for drug bioavailability determinations using pharmacological data. I. General considerations and procedures.J. Pharmacokin. Biopharm. 4:337–353 (1976).

    Article  CAS  Google Scholar 

  25. V. F. Smolen. Theoretical and computational basis for drug bioavailability determinations using pharmacological data. II. Drug input-response relationships.J. Pharmacokin. Biopharm. 4:355–375 (1976).

    Article  CAS  Google Scholar 

  26. P. J. Bickel and K. A. Doksum.Mathematical Statistics, Holden-Day, Oakland, CA, 1977.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Work supported in part by Department of Health, Education and Welfare Grants AG03104, AG04594, and GM26691.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Verotta, D., Sheiner, L.B. Semiparametric analysis of non-steady-state pharmacodynamic data. Journal of Pharmacokinetics and Biopharmaceutics 19, 691–712 (1991). https://doi.org/10.1007/BF01080874

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01080874

Key words

Navigation