Skip to main content
Log in

The design of mazes to studyDrosophila behavior

  • Published:
Behavior Genetics Aims and scope Submit manuscript

Abstract

Although mazes have been widely used in studying phototaxis, geotaxis, and, more recently, learning inDrosophila, there is no uniformity in maze design, and little is known about the effects such apparatus differences may have on behavior. The new maze design described here is based on T-junctions, molded individually in acrylic, and provides an inexpensive and standardized means of building mazes to any desired specification. The need for uniformity in maze design is demonstrated with an experiment on three variables at the start of a maze that affect the subsequent response of four strains ofD. melanogaster in different ways. Some implications for futureDrosophila research using mazes are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Dingle, C. D. (1962). The non-random behaviour ofAleochara bilineata Gyll. (Coleoptera Staphylinidae) in a Y-maze with neither reward nor punishment in either arm.Anim. Behav. 10:118–125.

    Google Scholar 

  • Dobzhansky, Th., Levene, H. and Spassky, B. (1972). Effects of selection and migration on geotactic and phototactic behaviour ofDrosophila. III.Proc. Roy. Soc. Lond. Ser. B 180:21–41.

    Google Scholar 

  • Ewing, A. W. (1963). Attempts to select for spontaneous activity inDrosophila melanogaster.Anim. Behav. 11:369–378.

    Google Scholar 

  • Ewing, A. W. (1967). Genetics and activity inDrosophila melanogaster.Experientia 23:330.

    Google Scholar 

  • Hadler, N. M. (1964). Genetic influences on phototaxis inDrosophila melanogaser.Biol. Bull. 126:264–273.

    Google Scholar 

  • Hay, D. A. (1973). Effects of genetic variation and culture conditions on the social behavior ofDrosophila melanogaster.Behav. Genet. 3:107–119.

    Google Scholar 

  • Hay, D. A. (1975). Strain differences in the maze-learning ability ofDrosophila melanogaster.Nature 257:44–46.

    Google Scholar 

  • Heisenberg, M., and Götz, K. G. (1975). The use of mutations for the partial degradation of vision inDrosophila melanogaster.J. Comp. Physiol. 98:217–241.

    Google Scholar 

  • Hirsch, J. (1959). Studies in experimental behavior genetics. II Individual differences in geotaxis as a function of chromosome variations in synthesizedDrosophila populations.J. Comp. Physiol. Psychol. 52:304–308.

    Google Scholar 

  • Hirsch, J., and Tryon, R. C. (1956). Mass screening and reliable individual measurement, in the experimental behavior genetics of lower organisms.Psychol. Bull. 53:402–410.

    Google Scholar 

  • Kessler, S. and Kraemer, H. C. (1975). Gene substitutions and geotaxis inDrosophila melanogaster.J. Comp. Physiol. Psychol. 89:274–278.

    Google Scholar 

  • Kikuchi, T. (1973). Genetic alteration of olfactory functions inDrosophila melanogaster.Japan. J. Genet. 48:105–118.

    Google Scholar 

  • Mosteller, F., and Youtz, C. (1961). Tables of the Freeman-Tukey transformations for the binomial and Poisson distributions.Biometrika 48:433–440.

    Google Scholar 

  • Murphey, R. M. (1965). Sequential alternation behavior in the fruit fly,Drosophila melanogaster.J. Comp. Physiol. Psychol. 60:196–199.

    Google Scholar 

  • Murphey, R. M., and Hall, C. F. (1969). Some correlates of negative getaxis inDrosophila melanogaster.Anim. Behav. 17:181–185.

    Google Scholar 

  • Nagylaki, T. and Levy, J. (1973). “The sound of one paw clapping” isn't sound.Behav. Genet. 3:279–292.

    Google Scholar 

  • Oshima, C., and Choo, J.-K. (1973). Comparison of some quantitative characters between populations selected for phototaxis inDrosophila virilis.Ann. Rep. Natl. Inst. Genet. (Japan) 23:117–119.

    Google Scholar 

  • Oshima, C., Inoue, K., and Choo, J.-K. (1972). Studies on behavior genetics. I. The selection for both photo-positive and photo-negative directions inDrosophila virilis.Environ. Control Biol. 10:192–197.

    Google Scholar 

  • Parsons, P. A. (1970). Genetic heterogeneity in natural populations ofDrosophila melanogaster for ability to withstand desiccation.Theor. Appl. Genet 40:261–266.

    Google Scholar 

  • Rockwell, R. F., and Seiger, M. B. (1973). Phototaxis inDrosophila A critical evaluation.Am. Scientist 61:339–345.

    Google Scholar 

  • Snedecor, G. W., and Cochran, W. G. (1967).Statistical Methods, 6th ed., Iowa State University Press, Ames, Ia.

    Google Scholar 

  • Spatz, H., Emanns, A., and Reichert, H. (1974). Associative learning ofDrosophila melanogaster.Nature 248:359–361.

    Google Scholar 

  • Walton, P. D. (1968). Factors affecting geotaxis scores inDrosophila melanogaster.J. Comp. Physiol. Psychol. 65:186–190.

    Google Scholar 

  • Walton, P. D. (1970). The genetics of phototaxis inDrosophila melanogaster.Can. J. Genet. Cytol. 12:283–287.

    Google Scholar 

  • Yeatman, F. R., and Hirsch, J. (1971). Attempted replication of, and selective breeding for, instrumental conditioning ofDrosophila melanogaster.Anim. Behav. 19:454–462.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hay, D.A., Crossley, S.A. The design of mazes to studyDrosophila behavior. Behav Genet 7, 389–402 (1977). https://doi.org/10.1007/BF01077451

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01077451

Key Words

Navigation