Skip to main content
Log in

Calcium/calmodulin-dependent protein kinase II: role in learning and memory

  • Protein Kinases
  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Numerous studies over the past decade have established a role(s) for protein phosphorylation in modulation of synaptic efficiency. This article reviews this data and focuses on putative functions of Ca2+/calmodulin-dependent protein kinase II (CaM-kinase II) which is highly concentrated at these synapses which utilize glutamate as the neurotransmitter. Evidence is presented that CaM-kinase II can phosphorylate these glutamate receptor/ion channels and enhance the ion current flowing through them. This may contribute to mechanisms of synaptic plasticity that are important in cellular paradigms of learning and memory such as long-term potentiation in the hippocampus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hanson PI, Schulman H: Neuronal Ca2+/calmodulin-dependent protein kinases. In: CC Richardson, JN Abelson, A. Meister, CT Walsh (eds) Ann Rev Biochem 61, Annual Reviews Inc., Palo Alto CA, 1992, pp 559–601

    Google Scholar 

  2. Colbran RJ, Soderling TR: Calcium/calmodulin-dependent protein kinase II. In: BL Horesker, ER Stadtman, PB Chock, A Levitzki (eds) Current Topics in Cellular Reg. Vol. 31. Academic Press, New York, 1990, pp 181–221

    Google Scholar 

  3. Kandel ER, Hawkins RD: The biological basis of learning and individuality. Scientific American 268: 79–86, 1992

    Google Scholar 

  4. Madison DV, Malenka RC, Nicoll RA: Mechanisms underlying long-term potentiation of synaptic transmission. Ann Rev Neurosci 14: 379–397, 1991

    PubMed  Google Scholar 

  5. Malinow R, Madison DV, Tsien RW: Persistent protein kinase activity underlying long-term potentiation. Nature 335: 820–824, 1988

    PubMed  Google Scholar 

  6. Lisman J: A mechanism for the Hebb and the anti-Hebb processes underlying learning and memory. Proc Natl Acad Sci USA 86: 9574–9578, 1989

    PubMed  Google Scholar 

  7. Kennedy MB, Bennett MK, Erondu NG: Biochemical and immunochemical evidence that the ‘major postsynaptic density protein’ is a subunit of a calmodulin-dependent protein kinase. Proc Natl Acad Sci USA 80: 7357–7361, 1983

    PubMed  Google Scholar 

  8. Lin CR, Kapiloff MS, Durgerian S, Tatemoto K, Russo AF, Hanson P, Schulman H, Rosenfeld MG: Molecular cloning of a brain specific calcium/calmodulin-dependent protein kinase. Proc Natl Acad Sci USA 84: 5962–5966, 1987

    PubMed  Google Scholar 

  9. Bulleit RF, Bennett MK, Molloy SS, Hurley JB, Kennedy MB: Conserved variable regions in the subunits of brain type II Ca2+/calmodulin-dependent protein kinase. Neuron 1: 63–72, 1988

    PubMed  Google Scholar 

  10. Kanaseki T, Ikeuchi Y, Sugiura H, Yamauchi T: Structural features of Ca2+/calmodulin-dependent protein kinase II revealed by electron microscopy. J Cell Biol 15: 1049–1060, 1991

    Google Scholar 

  11. Payne ME, Fong YL, Ono T, Colbran RJ, Kemp BE, Soderling TR, Means AR: Calcium/calmodulin-dependent protein kinase II: Characterization of distinct calmodulin-binding and inhibitory domains. J Biol Chem 263: 7190–7195, 1988

    PubMed  Google Scholar 

  12. Colbran RJ, Fong YL, Schworer CM, Soderling TR: Regulatory interactions between the calmodulin-binding, inhibitory, and autophosphorylation domains of Ca2+/calmodulin-dependent protein kinase II. J Biol Chem 263: 18145–18151, 1988

    PubMed  Google Scholar 

  13. Kwiatkowski AP, Huang CY, King MM: Kinetic mechanism of type II calmodulin-dependent protein kinase. Biochem 29: 153–159, 1990

    Google Scholar 

  14. Kwiatkowski AP, Shell DJ, King MM: The role of SUP autophosphorylation in activation of type II calmodulin-dependent protein kinase. J Biol Chem 263: 6484–6486, 1988

    PubMed  Google Scholar 

  15. Miller SG, Kennedy MB: Regulation of brain Ca2+/calmodulindependent protein kinase by autophosphorylation: A Ca2+-triggered molecular switch. Cell 44: 861–870, 1986

    PubMed  Google Scholar 

  16. Lai Y, Nairn AC, Greengard P: Autophosphorylation reversibly regulates the Ca2+/calmodulin-dependency of Ca2+/calmodulindependent protein kinase II. Proc Natl Acad Sci USA 83: 4253–4257, 1986

    PubMed  Google Scholar 

  17. Schworer CM, Colbran RJ, Soderling TR: Reversible generation of a Ca2+-independent form of Ca2+/calmodulin-dependent protein kinase II by an autophosphorylation mechanism. J Biol Chem 261: 8581–8584, 1986

    PubMed  Google Scholar 

  18. Meyer T, Hanson PI, Stryer L, Schulman H: Calmodulin trapping by Ca2+/calmodulin-dependent protein kinase. Science 256: 1199–1202, 1992

    PubMed  Google Scholar 

  19. Soderling TR, Schworer CM, Payne ME, Jett MF, Porter DK, Atkinson JL, Richtand NM: Calcium (calmodulin)-dependent protein kinase II. In: J Nunez, JE Dumont, RJB King (eds) Hormones and Cell Regulation, Colloque INSERM, Vol. 139. John Libbey Eurotex, London, 1986, pp 141–157

    Google Scholar 

  20. Simmerman HKB, Collins JH, Theibert JL, Wegener AD, Jones LR: Sequence analysis of phospholamban: Identification of phosphorylation sites and two major structural domains. J Biol Chem 261: 13333–13341, 1986

    PubMed  Google Scholar 

  21. Ando S, Tokui T, Yamauchi T, Sugiura H, Tanabe K, Inagaki M: Evidence that Ser-82 is a unique phosphorylation site on vimentin for Ca2+/calmodulin-dependent protein kinase II. Biochem Biophys Res Comm 175: 955–962, 1991

    PubMed  Google Scholar 

  22. Valtorta F, Benefanti F, Greengard P: Structure and function of synapsins. J Biol Chem 267: 7195–7198 1992

    PubMed  Google Scholar 

  23. Rich DP, Colbran RJ, Schworer CM, Soderling TR: Regulatory properties of CaM-kinase II rat brain postsynaptic densities. J Neurochem 53: 807–816, 1989

    PubMed  Google Scholar 

  24. Rich DP, Schworer CM, Colbran RJ, Soderling TR: Proteolytic activation of CaM-kinase II: Putative role in synaptic plasticity. Mol Cellular Neurosci 1: 107–116, 1990

    Google Scholar 

  25. Wu K, Carlin R, Siekevitz P: Binding of L-[3H] glutamate of fresh or frozen synaptic membrane and postsynaptic density fractions isolated from cerebral cortex and cerebellum of fresh or frozen canine brain. J Neurochem 46: 831–841 1986

    PubMed  Google Scholar 

  26. Meffert MK, Parfitt KD, Doze VA, Cohen GA, Madison DV: Protein kinase and long-term potentiation. Ann NY Acad Sci 627: 2–9, 1991

    PubMed  Google Scholar 

  27. Malinow R, Schulman H, Tsien RW: Inhibition of postsynaptic PKC or CaM-KII blocks induction but not expression of LTP. Science 245: 862–866, 1989

    PubMed  Google Scholar 

  28. Silva AJ, Stevens CF, Tonegawa S, Wang Y: Deficient hippocampal long-term potentiation in α-calcium-calmodulin kinase II mutant mice. Science 257: 201–206, 1992

    PubMed  Google Scholar 

  29. Silva AJ, Paylor R, Wehner JM, Tonegawa S: Impaired spatial learning ina-calcium-calmodulin kinase II mutant mice. Science 257: 206–209, 1992

    PubMed  Google Scholar 

  30. Bekkers JM, Stevens CF: Presynaptic mechanism for long-term potentiation in the hippocampus. Nature 346: 724–729, 1990

    Google Scholar 

  31. Manabe T, Renner P, Nicoll RA: Postsynaptic contribution to long-term potentiation revealed by the analysis of miniature synaptic currents. Nature 355: 50–55, 1992

    PubMed  Google Scholar 

  32. Fukunaga K, Rich DP, Soderling TR: Generation of the Ca2+-independent form of CaM-kinase II in cerebellar granule cells. J Biol Chem 264: 21530–21536, 1989

    Google Scholar 

  33. MacNicol M, Jefferson AB, Schulman H: Ca2+/calmodulin kinase is activated by the phosphatidylinositol signaling path way and becomes Ca2+-independent in PC12 cells. J Biol Chem 265: 18055–18058, 1990

    PubMed  Google Scholar 

  34. Jefferson AB, Traves SM, Schulman H: Activation of multifunctional Ca2+/CaM-dependent protein kinase in GH3 cells. J Biol Chem 266: 1484–1490, 1991

    PubMed  Google Scholar 

  35. Fukunaga K, Soderling TR: Activation of CaM-kinase II cerebellar granule cells by NMDA receptor activation Mol Cell Neurosci 1: 133–138, 1990

    Google Scholar 

  36. Vaccarino F, Guidotti A, Costa E: Ganglioside inhibition of glutamate-mediated protein kinase C translocation in primary cultures of cerebellar neurons. Proc Natl Acad Sci USA 84: 8707–8711, 1987

    PubMed  Google Scholar 

  37. Vaccarino FM, Liljequist S, Tallman JF: Modulation of protein kinase C. Translocation by excitatory and inhibitory amino acids in primary cultures of neurons. J Neurochem 57: 391–396, 1991

    PubMed  Google Scholar 

  38. Scholz WK, Palfrey HC: Glutamate-stimulated protein phosphorylation in cultured hippocampal pyramidal neurons. J Neurosci 11: 2422–2432, 1991

    PubMed  Google Scholar 

  39. Fukunaga K, Soderling TR, Miyamoto E: Activation of Ca2+/calmodulin-dependent protein kinase II and protein kinase C by glutamate in cultured rat hippocampal neurons. J Biol Chem 267: 22527–22533, 1992

    PubMed  Google Scholar 

  40. Molloy SS, Kennedy MB: Autophosphorylation of type II Ca2+/calmodulin-dependent protein kinase in cultures of postnatal rat hippocampal slices. Proc Natl Acad Sci USA 88: 4756–4760, 1991

    PubMed  Google Scholar 

  41. Halpain S, Greengard P: Activation of NMDA receptors induces rapid dephosphorylation of the cytoskeletal protein MAP2. Neuron 5: 237–246, 1990

    PubMed  Google Scholar 

  42. Klann E, Chen S-J, Sweatt JD: Persistent protein activation in the maintenance phase of long-term potentiation. J Biol Chem 266: 24253–24256, 1991

    PubMed  Google Scholar 

  43. Barrie AP, Nichols DG, Sanchez-Prieto J, Sihra TS: An ion channel locus for the protein kinase C potentiation of transmitter glutamate release from guinea pig cerebrocortical synaptosomes. J Neurochem 57: 1398–1404, 1991

    PubMed  Google Scholar 

  44. Nichols RA, Sihra TS, Czernik AJ, Nairn AC, Greengard P: Calcium/ calmodulin-dependent protein kinase II increases glutamate and noradrenaline release from synaptosomes. Nature 343: 647–651, 1990

    PubMed  Google Scholar 

  45. Chetkovich DM, Gray R, Johnston D, Sweatt JD:N-Methyl-d-aspartate receptor activation increases cAMP levels and voltagegated Ca2+ channel activity in area of CA1 of hippocampus. Proc Natl Acad Sci USA 88: 6467–6471, 1991

    PubMed  Google Scholar 

  46. Bading H, Greenberg ME: Stimulation of protein tyrosine phosphorylation by NMDA receptor activation. Science 253: 912–914, 1991

    PubMed  Google Scholar 

  47. Boulter J, Hollmann M, O'Shea-Greenfield A, Hartley M, Deneris E, Maron C, Heinemann S: Molecular cloning and functional expression of glutamate receptor subunit genes. Science 249: 1033–1037, 1990

    PubMed  Google Scholar 

  48. Keinänen K, Wisden W, Sommer B, Werner P, Herb A Verdoorn TA, Sakmann B, Seeburg PH: A family of AMPA-selective glutamate receptors. Science 249: 556–560, 1990

    PubMed  Google Scholar 

  49. Egebjerg J, Bettler B, Hermans-Borgmeyer I, Heinemann S: Cloning of a cDNA for a glutamate receptor subunit activated by kainate but not AMPA. Nature 351: 745–748, 1991

    PubMed  Google Scholar 

  50. Moriyoshi K, Masu M, Ishii T, Shigemoto R, Mizuno N, Nakanishi S: Molecular cloning and characterization of the rat NMDA receptor. Nature 354: 31–37, 1991

    PubMed  Google Scholar 

  51. Masu M, Tanabe Y, Tsuchida K, Shigemoto R, Nakanishi S: Sequence and expression of a metabotropic glutamate receptor. Nature 349: 760–764, 1991

    PubMed  Google Scholar 

  52. Wenthold RJ, Yokotani N, Doi K, Wada K: Immunochemical chaeacterization of the non-NMDA glutamate receptor using subunit-specific antibodies. J Biol Chem 267: 501–507, 1992

    PubMed  Google Scholar 

  53. Liman ER, Knapp AG, Dowling JE: Enhancement of kainategated currents in retinal horizontal cells by cAMP-dependent protein kinase. Brain Res 481: 399–402, 1989

    PubMed  Google Scholar 

  54. Wang L-Y, Salter MW, MacDonald JF: Regulation of kainate receptors by cAMP-dependent protein kinase and phosphatases. Science 253: 1132–1138, 1991

    PubMed  Google Scholar 

  55. Greengard P, Jen J, Nairn AC, Stevens CF: Enhancement of glutamate response by cAMP-dependent protein kinase in hippocampal neurons. Science 253: 1135–1138, 1991

    PubMed  Google Scholar 

  56. Raymond LA, Blackstone CD, Huganir RL: Phosphorylation and modulation of recombinant GluR6 glutamate receptors by cAMP-dependent protein kinase. Nature 361: 637–641, 1993

    PubMed  Google Scholar 

  57. Keller BU, Hollmann M, Heinemann S, Konnerth A: Calcium influx through subunits GluR1/GluR3 of kainate/AMPA receptor channels is regulated by cAMP dependent protein kinase. EMBO 11: 891–896, 1992

    Google Scholar 

  58. Chen L, Huang L-YM: Sustained potentiation of NMDA receptor-mediated glutamate responses through activation of protein kinase C by a μ opioid. Neuron 7: 319–326, 1991

    PubMed  Google Scholar 

  59. Chen L, Huang L-YM: Protein kinase C reduces Mg2+ block of NMDA-receptor channels as a mechanism of modulation. Nature 356: 521–523, 1992

    PubMed  Google Scholar 

  60. McGlade-McCulloh E, Yamamoto H, Tan SE, Brickey DA, Soderling TR: Phosphorylation and regulation of glutamate receptors by calcium/calmodulin-dependent protein kinase II. Nature 362: 640–642, 1993

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soderling, T.R. Calcium/calmodulin-dependent protein kinase II: role in learning and memory. Mol Cell Biochem 127, 93–101 (1993). https://doi.org/10.1007/BF01076760

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01076760

Key words

Navigation