Skip to main content
Log in

Membrane phospholipids and adrenergic receptor function

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

We have reviewed the effects on adrenergic receptors by membrane phospholipid alterations secondary to oxidative stress and phospholipases' activity. Experimental evidences indicate that the function of both α- and β-adrenoceptors is regulated by their phospholipid microdomain; however, the underlying mechanism is still undefined. No information seems to be available on the influence of phospholipids on β2-adrenoceptors and on all adrenoceptors' subtypes. Thus, further studies are necessary to clarify the role of membrane phospholipids in regulating the function of each member of the adrenergic receptor superfamily.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Strosberg AD: Structure, function and regulation of adrenergic receptors. Protein Sci 2: 1198–1209, 1993

    PubMed  Google Scholar 

  2. Ahlquist RP: A study of adrenotropic receptors. Am J Physiol 153: 586–600, 1948

    Google Scholar 

  3. Bylun DB, Eikenberg DC, Hieble JP, Langer SZ, Lefkowtiz RJ, Minneman K, Molinoff PB, Ruffolo RR, Trendelenburg V: International Union of Pharmacology Nomenclature of Adrenoceptors. Pharmacol Rev 46: 121–136, 1994

    PubMed  Google Scholar 

  4. Ford APDW, Williams TJ, Blue DR, Clarke DE: 221-1 classification: Sharpening Occam's razor. Trends Pharmacol Sci 15: 167–170, 1994

    PubMed  Google Scholar 

  5. Ruffolo RR, Hieble PB: α-Adrenoceptors. Pharmac Ther 61: 1–64, 1994

    Google Scholar 

  6. Exton JH. Phosphoinositide phospholipases and G proteins in hormone action. Annu Rev Physiol 56: 349–369, 1994

    PubMed  Google Scholar 

  7. Berridge M: Inositol trisphosphate and diacylglycerol as second messengers. Biochem J 220: 345–360, 1984

    PubMed  Google Scholar 

  8. Tang W-J, Gilman AG: Adenylyl cyclases. Cell 70: 869–872, 1992

    PubMed  Google Scholar 

  9. Birnbaumer L: G proteins in signal transduction. Annu Rev Pharmacol Toxicol 30: 675–705, 1990

    PubMed  Google Scholar 

  10. Clapham DE, Neer EJ: New roles for G-proteins βγ-dimers in transmembrane signalling. Nature 365: 403–406, 1993

    PubMed  Google Scholar 

  11. Sternweis PC: The active role of βγ in signal transduction. Curr Opin Cell Biol 6: 198–203, 1994

    PubMed  Google Scholar 

  12. Kinsella BT, O'Mahoney DJ: Lipid modification of G proteins. Trends Cardiovasc Med 4: 27–34, 1994

    Google Scholar 

  13. Bernstein G, Blank JL, Jhon D-Y, Exton JH, Rhee SG, Ross EM: Phospholipase C-β2 is a GTPase activating protein for Gq/11, its physiological regulator. Cell 70: 411–418, 1992

    PubMed  Google Scholar 

  14. Brown AM: Membrane-delimited cell signalling complexes: direct ion channel regulation by G proteins. J Membr Biol 131: 93–104, 1993

    PubMed  Google Scholar 

  15. Wu D, Simon MI: Identification of critical regions on phospholipase C-β required for activation by G-proteins. J Biol Chem 268: 3704–3709, 1993

    PubMed  Google Scholar 

  16. Carruthers A, Melchior DL: Effect of lipid environment on membrane transport: the human erythrocyte sugar transport protein/bilayer system. Annu Rev Physiol 50: 257–271, 1988

    PubMed  Google Scholar 

  17. Halliwell B: Reactive oxygen species in living systems: source, biochemistry, and role in human disease. Am J Med 91(suppl 3C): 14S-22S, 1991

    Google Scholar 

  18. Kaul N, Siveski-Iliskovic N, Hill M, Slezak J, Singal PK: Free radicals and the heart. J Pharmacol Toxicol Methods 30: 55–67, 1993

    PubMed  Google Scholar 

  19. Sies H, Cadenas E: Oxidative stress: damage to intact cells and organs. Phil Trans Roy Soc London B 311: 617–631, 1985

    PubMed  Google Scholar 

  20. Freeman BA, Crapo JD: Biology of disease. Free radicals and tissue injury. Lab Invest 47: 412–426, 1982

    PubMed  Google Scholar 

  21. Wolff SP, Garner A, Dean RT: Free radicals, lipids and protein degradation. Trends Biochem Sci 11: 27–31, 1986

    Google Scholar 

  22. Haenen GR, Veerman M, Bast A: Reduction of β-adrenoceptor function by oxidative stress in the heart. Free Radical Biol Med 9: 279–288, 1990

    Google Scholar 

  23. McMurchie EJ: Dietary lipids and the regulation of membrane fluidity and function. In: R.C. Aloia, C.C. Curtain, L.M. Gordon (eds). Physiological regulation of membrane fluidity. Alan R. Liss, New York, 1988, pp 189–237

    Google Scholar 

  24. Shinitzky M: Membrane fluidity and cellular functions. In: M. Shinitzky (ed.). Physiology of membrane fluidity, vol. 1. CRC Press, Boca Raton, 1984, pp 1–51

    Google Scholar 

  25. Richter C: Biophysical consequences of lipid peroxidation in membrane. Chem Phys Lipids 44: 175–189, 1987

    PubMed  Google Scholar 

  26. Hershkowitz M, Heron D, Samuel D, Shinitzky M: Modulation of protein phosphorylation and receptor binding in brain membranes by changes in lipid microviscosity: implication for aging. Prog Brain Res 56: 419–425, 1982

    PubMed  Google Scholar 

  27. Kaneko M, Panagia V, Paolillo G, Majumder S, Ou C, Dhalla NS: Inhibition of cardiac phosphatidylethanolamine N-methylation by oxygen free-radicals. Biochim Biophys Acta 1021: 33–38, 1990

    PubMed  Google Scholar 

  28. Meij JTA, Suzuki S, Panagia V, Dhala NS: Oxidative stress modifies the activity of cardiac sarcolemmal phospholipase C. Biochim Biophys Acta 1199: 6–12, 1994

    PubMed  Google Scholar 

  29. Dai J, Meij JTA, Padua R, Panagia V: Depression of sarcolemmal phospholipase D activity by oxidant-induced thiol modification. Circ Res 71: 970–977, 1992

    PubMed  Google Scholar 

  30. Limas CJ: Effect of phospholipid methylation on β-adrenergic receptors in the normal and hypertrophied rat myocardium. Circ Res 47: 536–541, 1980

    PubMed  Google Scholar 

  31. Okumura K, Ogawa K, Sataka T: Phospholipid methylation in canine membranes: relations to β-adrenergic receptors and digitalis receptors. Jpn Heart J 24: 215–225, 1983

    PubMed  Google Scholar 

  32. Strittmatter WJ, Hirata F, Axelrod J: Phospholipid methylation unmasks cryptic β-adrenergic receptors in rat reticulocytes. Science 204: 1205–1207, 1979

    PubMed  Google Scholar 

  33. Hirata F: Regulation of membrane fluidity by phospholipid methylation. In: R.C. Aloia, J.M. Boggs (eds.). Membrane fluidity in biology. Academic Press, Orlando, 1985, pp 247–257

    Google Scholar 

  34. Pruijn FB, Van Gelderen H, Bast A: The effects of radical stress and N-ethylmaleimide on rat hepatic α1-adrenergic receptors. Toxicol Lett 45: 73–82, 1989

    PubMed  Google Scholar 

  35. Vetter R, Dai J, Mesaeli N, Panagia V, Dhalla NS: Role of sulfhydryl groups in phospholipid methylation reactions of cardiac sarcolemma. Mol Cell Biochem 103: 85–96, 1991

    PubMed  Google Scholar 

  36. Van der Vliet A, Bast A: Effect of oxidative stress on recepotors and signal transmission. Chem-Biol Interactions 85: 95–116, 1992

    Google Scholar 

  37. Waite M: The phospholipases. Handbook of lipid research, vol. 5, Plenum Press, New York, 1988, pp 332

    Google Scholar 

  38. Axelrod J: Receptor-mediated activation of phospholipase A2 and arachidonic acid release in signal transduction. Biochem Soc Trans 18: 503–507, 1990

    PubMed  Google Scholar 

  39. Exton JH: Phosphoinositide phospholipases and G protein in hormone action. Annu Rev Physiol 56: 349–369, 1994

    PubMed  Google Scholar 

  40. Billah MM, Anthes JC: The regulation and cellular functions of phosphatidylcholine hydrolysis. Biochem J 269: 281–291, 1990

    PubMed  Google Scholar 

  41. Prasad MR, Popescu LM, Moraru II, Liu X, Maity S, Engelman RM, Das DK. Role of phospholipase A2 and C in myocardial ischemic reperfusion. Am J Physiol 260: H877-H883, 1991

    PubMed  Google Scholar 

  42. Panagia V, Meij JTA, Mesaeli N, Singal RK, Dhalla NS: Depression of sarcolemmal phospholipase C activity in congestive heart failure. In: N.S. Dhalla, G.N. Pierce, V. Panagia, R.E. Beamish (eds.) Heart hypertrophy and failure. Kluwer Acad. Publ, Boston, in press

  43. Dai J, Panagia V: Distinct changes of sarcolemmal and sarcoplasmic reticular phospholipase D activity in ischemic-reperfused heart. FASEB J 7: A121, 1993

    Google Scholar 

  44. Kirilovsky J, Schramm M: Delipidation of a β-adrenergic receptor preparation and reconstitution by specific lipids. J Biol Chem 258: 6841–6849, 1983

    PubMed  Google Scholar 

  45. Limbird LE, Lefkowitz RJ: Adenylate cyclase-coupled beta-adrenergic receptors: Effect of membrane lipid-perturbing agents on receptor binding and enzyme stimulation by catecholamines. Mol Pharmacol 12: 559–567, 1976

    PubMed  Google Scholar 

  46. Shreeve SM, Valliere JE: The α1-adrenoceptor is inactivated by alterations in membrane phosphilipids. Eur J Pharmacol 226: 29–33, 1992

    PubMed  Google Scholar 

  47. Skúladóttir GV, Schiöth HB, Gudbjarmason S: Polyunsaturated fatty acids in heart muscle and α1-adrenoceptor binding properties. Biochim Biophys Acta 1178: 49–54, 1993

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Williams, S., Meij, J.T.A. & Panagia, V. Membrane phospholipids and adrenergic receptor function. Mol Cell Biochem 149, 217–222 (1995). https://doi.org/10.1007/BF01076580

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01076580

Key Words

Navigation