Skip to main content
Log in

Study of fracture permeability using Lattice Gas Automata

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

We study the problem of flow permeability of fracture joints using Lattice-Gas Automata simulations. We model the fracture as a rough channel bounded by a self-affine surface. Changing the surface roughness exponent, rough walls having different microstructures are obtained. Different relative roughnesses — defined as the height of the largest surface asperity divided by the mean aperture — are obtained ‘pulling apart’ the two surfaces that constitute the rough walls of the channel. We calculate the macroscopic variables volume flow rate and pressure difference using microscopic balances. In the low Reynolds number regime the pressure difference and the flow rate are linearly related (the behavior is described by Darcy's law). In this regime, we study the effect of geometry on the permeability. We have found that permeability is independent of the surface roughness exponentH and it is fully determined in terms of the relative roughness and mean aperture of the fracture joint. For larger Reynolds numbers a transition to a regime in which pressure difference and flow rate are not longer linearly related is observed. This transition is observed in a domain of Reynolds numbers for which the behavior in a smooth channel remains linear. We discuss this transition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mandelbrot, B. B., Passoja, D. E. and Paullay, A. J.,Nature 308 (1984) 721.

    Google Scholar 

  2. Brown, S. R. and Scholz, C. H.,J. Geophys. Research 90 (1985) 12575.

    Google Scholar 

  3. Power, W. L., Tullis, T. E., Brown, S. R., Boitnott, G. N. and Scholz, C. H.,Geophys. Res. Lett. 14 (1987) 29.

    Google Scholar 

  4. Mu, Z. Q. and Lung, C. W.,J. Phys. D 21 (1988) 848.

    Google Scholar 

  5. Mecholsky, J. J., Passoja, D. E. and Feinberg-Ringel, K.,J. Am. Ceram. Soc. 72 (1989) 60.

    Google Scholar 

  6. Bouchaud, E., Lapasset, G. and Planès, J.,Europhys. Lett. 13 (1990) 73.

    Google Scholar 

  7. Bursill, L. A., Fan XuDong and Peng Julin,Philos. Mag. A 64 (1991) 443.

    Google Scholar 

  8. Måløy, K. J., Hansen, A., Hinrichsen, E. L. and Roux, S.,Phys. Rev. Lett. 68 (1992) 213.

    Google Scholar 

  9. Tanaka, M.,J. Mater. Sci. 27 (1992) 4717.

    Google Scholar 

  10. Issa, M. A., Hammad, A. M. and Chudnovsky, A., inEngineering Mechanics (ed.) by L. D. Lutes and J. M. Niedzwecki (American Soc. of Civil Engineers, New York, 1992).

    Google Scholar 

  11. Schmittbuhl, J., Gentier S. and Roux, S.,Geophys. Res. Lett. 20 (1993) 639.

    Google Scholar 

  12. Milman, Yu. V., Blumenfeld, R., Stelmanshenko, N. A. and Ball, R.,Phys. Rev. Lett. 71 (1993) 204.

    Google Scholar 

  13. Bouchaud, E., Lapasset, G., Planès, J. and Naveos, S.,Phys. Rev. B 48 (1993) 2917.

    Google Scholar 

  14. Horvath, V., Kertész, J. and Weber, F.,Fractals 1 (1993) 67.

    Google Scholar 

  15. Engøy, T., Måløy, K. J., Hansen, A. and Roux, S.,Phys. Rev. Lett. 73 (1994) 834.

    Google Scholar 

  16. See e.g. Tzschichholz, F. and Pfuff, M., in J. G. M. van Mier, J. G. Rots and A. Bakker (ed.)Fracture Processes in Concrete, Rock and Ceramics, Vol. 1, Cambridge University Press, Cambridge, 1991; Lea Cox, B. and Wang, J. S. Y.,Fractals 1 (1993) 87; or Bouchaud E. in the Proceedings of the conference ‘Dislocations 93’ for reviews.

    Google Scholar 

  17. Feder, J.,Fractals Plenum, New York, 1988.

    Google Scholar 

  18. Frisch, U., Hasslacher, B. and Pomeau, Y.,Phys. Rev. Lett. 56 (1986) 1505.

    Google Scholar 

  19. Rothman, D. H.,Geophysics 53 (1988) 509.

    Google Scholar 

  20. Flekkøy, E. G., Feder, J. and Jøssang, T.,J. Stat. Phys. 68 (1992) 515.

    Google Scholar 

  21. Rothman, D. H. and Keller, J. M.,J. Stat. Phys. 52 (1988) 1119.

    Google Scholar 

  22. Gunstensen, A. K., Rothman, D. H., Zaleski, S. and Zanetti, G.,Phys. Rev. A 43 (1991) 4320.

    Google Scholar 

  23. Lim, H. A.,Phys. Rev. A 40 (1989) 968

    Google Scholar 

  24. Tsang, Y. W., Witherspoon, P. A.,J. Geophys. Res. 86 (1981) 9287.

    Google Scholar 

  25. Schrauf, T. W. and Evans, D. D.,Water Resour. Res. 22 (1986) 1038.

    Google Scholar 

  26. Brown, S. R.,J. Geophys. Res. 92 (1987) 1337.

    Google Scholar 

  27. Roux, S., Schmittbul, J., Vilotte, J. P. and Hansen, A.,Europhys. Lett. 23 (1993) 27.

    Google Scholar 

  28. Frisch, U., d'Humières, D., Hasslacher, B., Lallemand, P., Pomeau, Y. and Rivet, J. P.,Complex Systems 1 (1987) 649.

    Google Scholar 

  29. d'Humières, D. and Lallemand, P.,Physica 140A (1986) 326.

    Google Scholar 

  30. Brosa, U. and Stauffer, D.,J. Stat. Phys. 57 (1989) 399.

    Google Scholar 

  31. Clavin, P., d'Humières, D., Lallemand, P. and Pomeau, Y.,C. R. Acad. Sc. Paris 303(II) (1986) 1169.

    Google Scholar 

  32. Voss, R. F.,Random fractal forgeries, in R. A. Earnshaw (ed.)Fundamental Algorithm in Computer Graphics, Springer Verlag, Berlin, 1985, p. 805.

    Google Scholar 

  33. Kohring, G. A.,J. Stat. Phys. 63 (1991) 411.

    Google Scholar 

  34. Kohring, G. A.,J. Phys. II (Paris)1 (1991) 593.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gutfraind, R., Hansen, A. Study of fracture permeability using Lattice Gas Automata. Transp Porous Med 18, 131–149 (1995). https://doi.org/10.1007/BF01064675

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01064675

Key words

Navigation