Skip to main content
Log in

A class of nonlinear, completely integrable abstract wave equations

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

IfL is a positive self-adjoint operator on a Hubert spaceH, with compact inverse, the second-order evolution equation int,u″+Lu+u 2H u=0 has an infinite number of first integrals, pairwise in involution. It follows from this that no nontrivial solution tends weakly to 0 inH ast→∞. Under an additional separation assumption on the eigenvalues ofL, all trajectories (u,u′) are relatively compact inD(L 1/2H. Finally, if all the eigenvalues are simple, the set of initial values of quasi-periodic solutions is dense in the ball Bε=(u 0,u 0 )εD(L 1/2H; ∥L1/2 u 0 2 H +∥u 2 <ɛ forɛ sufficiently small.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnold, V. (1989).Mathematical Methods of Classical Mechanics, Graduate Texts in Mathematics 60, 2nd ed., Springer, New York.

    Google Scholar 

  2. Brezis, H., Coron, J.-.M., and Nirenberg, L. (1980). Free vibration for a nonlinear wave equation and a theorem of P. Rabinowitz.Commun. Pure Appl. Math. 33, 667–689.

    Google Scholar 

  3. Cabannes, H., and Haraux, A. (1981). Mouvements presque-périodiques d'une corde vibrante en présence d'un obstacle fixe, rectiligne ou ponctuel.Int. J. Nonlin. Mech. 16, 449–458.

    Google Scholar 

  4. Cazenave, T., and Haraux, A. (1987). Oscillatory phenomena associated to semilinear wave equations in one spatial dimension.Trans. Am. Math. Soc. 300, 207–233.

    Google Scholar 

  5. Cazenave, T., and Haraux, A. (1988). Some oscillation properties of the wave equation in several space dimensions.J. Fund. Anal. 76, 87–109.

    Google Scholar 

  6. Cazenave, T., Haraux, A., Vázquez, L., and Weissler, F. B. (1989). Nonlinear effects in the wave equation with a cubic restoring force.Comp. Mech. 5, 49–72.

    Google Scholar 

  7. Cazenave, T., Haraux, A., and Weissler, F. B. (1991). Une équation des ondes complètement intégrable avec non-linéarité homogène de degré trois.C.R. Acad. Sci. Paris 313, 237–241.

    Google Scholar 

  8. Cazenave, T., Haraux, A., and Weissler, F. B. (1993). Detailed asymptotics for a convex Hamiltonian system with two degrees of freedom.J. Dynam. Diff. Eq. 5, 155–187.

    Google Scholar 

  9. Haraux, A. (1983). Remarks on Hamiltonian systems.Chinese J. Math. 11, 5–32.

    Google Scholar 

  10. Lax, P. D. (1975). Periodic solutions of the Korteweg-De Vries equation.Commun. Pure Appl. Math. 28, 141–188.

    Google Scholar 

  11. Rabinowitz, P. H. (1978). Free vibrations for a semi-linear wave equation.Commun. Pure Appl. Math. 31, 31–68.

    Google Scholar 

  12. Siegel, C. L., and Moser, J. K. (1971).Lectures on Celestial Mechanics, Springer, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cazenave, T., Haraux, A. & Weissler, F.B. A class of nonlinear, completely integrable abstract wave equations. J Dyn Diff Equat 5, 129–154 (1993). https://doi.org/10.1007/BF01063738

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01063738

Key words

AMS classifications

Navigation