Skip to main content
Log in

Evaluation of mass transport in copper and zinc electrodeposition using tracer methods

  • Papers
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Control of the electrocrystallization process is essential in the deposition of metals from aqueous electrolytes. A knowledge of the influence of mass transfer on the metal ion reduction is a critical element in any number of electrolytic processes, particularly where relatively high current densities are desired. The use of more positive ion tracer techniques as a means of experimentally determining some of the mass transport properties of interest are described. Examples for copper, zinc and zinc alloys electrolysis are included.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

C b :

concentration in the bulk of the solution

C s :

concentration at the surface of the electrode

d :

hydraulic diameter of the cross section of the cell

D :

diffusion coefficient

e Me :

equivalent weight of Me

F :

Faraday number

g :

acceleration due to gravity

Gr :

Grashof number

H :

hydrodynamic entrance length

(It):

quantity of electricity (current times time)

J :

current density

J dl :

diffusion limiting current density

k=J dl/zFC :

mass transfer coefficient

L :

electrode length

P Me :

deposited mass of Me

Re=vd/ν:

Reynolds number

Sc=ν/D :

Schmidt number

Sh :

Sherwood number

v :

speed of electrolyte

z :

number of electrons exchanged in the electrode reaction

δ:

thickness of the diffusion layer

η d :

diffusion overvoltage

ν:

kinematic viscosity of electrolyte

ϱ:

average density across diffusion layer

ϱb :

bulk electrolyte density

ϱ1 :

density of the electrolyte at the surface of the electrode

ω:

rotation speed of the electrode

References

  1. H. Fischer, Elektrolytische Abscheidung und Elektrokristallisation von Metallen Springer, Berlin (1965).

    Google Scholar 

  2. R. Winand,Mém. Scient. Revue Métall. 58 (1961) 25.

    Google Scholar 

  3. R. Winand,Trans. IMM Sect. C 84 (1975) 67.

    Google Scholar 

  4. R. Winand, in Application of Polarization Measurements in the Control of Metal Deposition (edited by I. H. Warren), Elsevier, Amsterdam (1984) pp. 47–83.

    Google Scholar 

  5. M. Lambert and R. Winand,Oberfläche/Surface 8 (1977) 208.

    Google Scholar 

  6. W. W. Harvey, in ‘Energy Reduction Techniques in Metal Electrochemical Processes’ (edited by R. G. Bautista and R. T. Wesely), TMS-AIME (1980) pp. 93–110.

  7. K. A. Spring and J. W. Evans,ibid. in ‘Energy Reduction Techniques in Metal, Electrochemical Processes’ (edited by R. G. Bautista and R. T. Wesely), TMS-AIME (1980) pp. 309–318.

  8. Third, Fourth and Fifth Meetings of the American Electroplaters Society on Continuous Strip Plating — respectively Annapolis, April 1980, Chicago, May 1984, Detroit, May 1987.

  9. Ph. Harlet and R. Winand, in ‘Electrowinning and Electrorefining of Copper’ (edited by J. E. Hoffmann, R. G. Bautista, V. A. Ettel, V. Kudryk and R. J. Wesely), TMS-AIME (1987) pp. 239–267.

  10. J. R. Lloyd, E. M. Sparrow and E. R. Eckert,J. Electrochem. Soc. 119 (1972) 702.

    Google Scholar 

  11. G. Wranglen and O. Nilson,Electrochim. Acta 7 (1962) 121.

    Google Scholar 

  12. N. Ibl,Chemie Ing. Tech. 43 (1971) 202.

    Google Scholar 

  13. A. Tvarusko and L. S. WatkinsElectrochim. Acta 14 (1969) 1109.

    Google Scholar 

  14. A. Tvarusko and L. S. Watkins,J. Electrochem. Soc. 118 (1971) 580.

    Google Scholar 

  15. F. R. McLarnon, R. H. Muller and W. C. Tobias,Electrochim. Acta,21 (1976) 101.

    Google Scholar 

  16. Y. Awakura and Y. Konda,J. Electrochem. Soc. 123 (1976) 8, 1184.

    Google Scholar 

  17. Y. Awakura, Y. Takenaka and Y. Kondo,Electrochim. Acta 21 (1976) 789.

    Google Scholar 

  18. A. Brenner,Proc. Am. Electroplat. Soc. 95 (1940) 4.

    Google Scholar 

  19. V. A. Ettel, B. V. Tilak and A. S. Gendron,J. Electrochem. Soc. 121 (1974) 7, 867.

    Google Scholar 

  20. M. Degrez and R. Winand,Revue ATB Met. 19 (1979) 21.

    Google Scholar 

  21. M. Degrez and R. WinandElectrochim. Acta 29 (1984) 365.

    Google Scholar 

  22. T. J. O'Keefe, J. S. Cuzmar and S. F. Chen, Evaluation of mass transfer coefficients in metal deposition by electrochemical techniques. Paper presented at the 115th AIME Annual Meeting, New Orleans, LA, March 1986.

  23. D. J. Pickett and K. Ong,Electrochim. Acta 19 (1974) 875.

    Google Scholar 

  24. J. Besson and J. Guitton,J. Chim. Phys. 67 (1970) 1097.

    Google Scholar 

  25. D. J. Pickett and B. R. Stanmore,J. Appl. Electrochem. 2 (1972) 151.

    Google Scholar 

  26. I. Rousar, J. Hostomsky, V. Cesner and B. Stverak,J. Electrochem. Soc. 118 (1971).

  27. C. R. Wilke, C. W. Tobias and M. Eisenberg,Chem. Eng. Progr. 49 (1953) 663.

    Google Scholar 

  28. A. A. Wragg,Electrochim. Acta 13 (1968) 2159.

    Google Scholar 

  29. E. J. Fenech and C. W. Tobias,Electrochim. Acta. 2 (1960) 311.

    Google Scholar 

  30. N. Ibl,Electrochim. Acta. 24 (1979) 1105.

    Google Scholar 

  31. V. Bastin, M. Degrez and R. Winand, Restricted report to Metallurgie Hoboken Overpelt, ULB (1987).

  32. T. J. O'Keefe, J. S. Cuzmar and S. F. Chen,J. Electrochem. Soc. 134 (1987) 547.

    Google Scholar 

  33. B. Tshula-Kabongo, Electrorefining of copper. PhD Thesis, ULB (1983).

  34. A. J. Bard and L. R. Faulkner, ‘Electrochemical Methods. Fundamentals and Applications’, John Wiley, New York (1980).

    Google Scholar 

  35. S. Bruckenstein, J. W. Sharkey, and J. Y. Yip,Anal. Chem. 57 (1985) 368.

    Google Scholar 

  36. P. Hannaert,Ind. Chim. Belge,32 (1967) 223.

    Google Scholar 

  37. A. Weymeersch, R. Winand and L. Renard, Plating and Surface Finishing, April (1981), pp. 56–59.

    Google Scholar 

  38. R. Winand,Oberfläche/Surface 25 (1984) 11.

    Google Scholar 

  39. A. Wymeersch, L. Renard, J. J. Conreur, R. Winand, M. Jorda and C. Pellet,Plating Surface Finish 73 (1986) 67.

    Google Scholar 

  40. T. R. Beck,J. Electrochem. Soc. 116 (1969) 1038.

    Google Scholar 

  41. M. D. Birkett and A. Kuhn,Electrochim. Acta 22 (1977) 1427.

    Google Scholar 

  42. N. Ibel and J. Venczel,Metalloberfläche 24 (1970) 365.

    Google Scholar 

  43. J. L. Janssen and J. Hoogland,Electrochim. Acta 15 (1970), 1013.

    Google Scholar 

  44. A. Rodriguez Fajardo, R. Winand, A. Weymeersch and L. Renard, Fundamental aspects of Zn-Fe alloys electrodepostion. Fifth AES Continuous Strop Plating Symposium, Detroit, May 1987.

  45. S. F. Chen, J. S. Cuzmar, T. J. O'Keefe, E. R. Cole, V. R. Miller and J. H. Lindsay, Measurements of mass transfer effects in sulfate electrogalvanizing electrolyte. Fifth AES Continuous Strip Plating Symposium, Detroit, May 1987.

  46. M. Degrez and R. Winand, Restricted report to Vieille Montagne, ULB (1987).

  47. E. R. G. Eckert and R. M. Drake, ‘Heat and Mass Transfer’, McGraw-Hill, New York (1959).

    Google Scholar 

  48. G. Troch, Influence of inhibitors on copper electrodeposition in sulphuric solution. PhD Thesis ULB (1983).

  49. G. Troch, M. Degrez and R. Winand,Proc. Electrochem. Soc. 84 (1984) 10, 642.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, H.M., Chen, S.F., O'Keefe, T.J. et al. Evaluation of mass transport in copper and zinc electrodeposition using tracer methods. J Appl Electrochem 19, 174–182 (1989). https://doi.org/10.1007/BF01062297

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01062297

Keywords

Navigation