Skip to main content
Log in

The two-dimensional Navier-Stokes equations with a large-scale instability of the Kuramoto-Sivashinsky type: Numerical exploration on the Connection Machine

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

The two-dimensional Navier-Stokes equations with a large-scale instability of the Kuramoto-Sivashinsky type, describing marginally negative eddy-viscosity situations, is simulated on a Connection Machine CM-2. Up to millions of time steps at the resolution 2562 and tens of thousands at the resolution 10242 are performed. Advantage is taken of a novel complex variable form of the two-dimensional Navier-Stokes equations, which requires only two complex FFTs per time step. A linear growth phase, a disorganized inverse cascade phase, and a structured vortical phase are successively observed. In the vortical phase monopolar and multipolar structures are proliferating and display strongly depleted nonlinearities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Basdevant, C. (1983). Technical improvements for direct numerical simulation of homogeneous three-dimensional turbulence,J. Comput. Phys. 50, 209.

    Google Scholar 

  • Basdevant, C., Legras, B., Sadourny, R., and Béland, M. (1981). A study of barotropic model flows: Intermittency, waves and perdictability,J. Atmos. Sci. 38, 2305.

    Google Scholar 

  • Boghosian, B. M. (1990). Computational physics on the connection machine,Computers Phys. Jan/Feb, 14.

    Google Scholar 

  • Dubrulle, B., and Frisch, U. (1991). The eddy-viscosity of parity-invariant flow,Phys. Rev. A 43, 5355.

    Google Scholar 

  • Fornberg, B. (1977). A numerical study of 2-D turbulence,J. Comput. Phys. 25, 1.

    Google Scholar 

  • Frisch, U., and Sulem, P. L. (1984). Numerical simulation of the inverse cascade in two dimensional turbulence,Phys. Fluids 27(8), 1921.

    Google Scholar 

  • Frisch, U., and Orszag, S. A. (1990). Turbulence: Challenges for theory and experiment,Phys. Today,January, 24.

    Google Scholar 

  • Frisch, U., She, Z. S., and Thual, O. (1986). Viscoelastic behaviour of cellular solutions to the Kuramoto-Sivashinsky model,J. Fluid Mech. 168, 221.

    Google Scholar 

  • Gottlieb, D., and Orszag, S. A. (1977). Numerical analysis of spectral methods, SIAM, Philadelphia, Pennsylvania.

    Google Scholar 

  • Hillis, D. (1985).The Connection Machine, MIT Press, Cambridge, Massachusetts.

    Google Scholar 

  • Kraichnan, R. H. (1967). Inertial ranges in two-dimensional turbulence,Phys. Fluids 10, 1417.

    Google Scholar 

  • Legras, B., Santangelo, P., and Benzi, R. (1988). High resolution numerical experiments for forced two-dimensional turbulence,Europhys. Lett. 5, 37.

    Google Scholar 

  • Lesieur, M. (1987).Turbulence in Fluids, Martinus Nijhoff, The Hague.

    Google Scholar 

  • Meshalkin, L. D., and Sinai, Ya. G. (1961). Investigation of the stability of a stationary solution of a system of equations for the plane movement of an incompressible viscous liquid,J. Appl. Math. Mech. (PMM) 25, 1700.

    Google Scholar 

  • McWilliams, J. C. (1984). The emergence of isolated coherent vortices in turbulent flow,J. Fluid Mech. 146, 21.

    Google Scholar 

  • Nepomnyashchy, A. A. (1976). On the stability of the secondary flow of a viscous fluid in an infinite domain (in Russian),Appl. Math. Mech 40(5), 886.

    Google Scholar 

  • Nicolaenko, B., Scheurer, B., and Temam, R. (1984). Quelques propriétés des attracteurs pour l'équation de Kuramoto-Sivashinsky,C. R. Acad. Sci. Paris 298, 23.

    Google Scholar 

  • Peltz, R. (1991). Fourier spectral methods on ensemble architectures,Computer Meth. Appl. Mech., in press.

  • Santangelo, P., Benzi, R., and Legras, B. (1989). The generation of vorticies in high resolution, two-dimensional decaying turbulence and the influence of initial conditions on the breaking of self-similarity,Phys. Fluids A 1, 1027.

    Google Scholar 

  • Weiss, J. (1981). The dynamics of enstrophy transfer in two-dimensional hydrodynamics, La Jolla Institute preprint; also published inPhysica D 48 (1991), 273.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gama, S., Frisch, U. & Scholl, H. The two-dimensional Navier-Stokes equations with a large-scale instability of the Kuramoto-Sivashinsky type: Numerical exploration on the Connection Machine. J Sci Comput 6, 425–452 (1991). https://doi.org/10.1007/BF01060033

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01060033

Key words

Navigation