Skip to main content
Log in

A review of metabolite kinetics

  • Published:
Journal of Pharmacokinetics and Biopharmaceutics Aims and scope Submit manuscript

Abstract

The importance of metabolites as active and toxic entities in drug therapy evokes the need for an examination of metabolite kinetics after drug administration. In the present review, emphasis is placed on single-compartmental characteristics for a drug and its primary metabolites under linear kinetic conditions. The determination of the first-order elimination rate constants for drug and metabolite are also detailed. For any ithprimary metabolite miformed solely in liver, kinetic parameters with respect to primary metabolite formation under first-order conditions require a comparison of the areas under the metabolite concentration-time curve after drug and preformed metabolite administrations. These area ratios hold regardless of the number of noneliminating compartments for the drug and metabolite. These parameters include fmi and gmi,the fractions of total body clearance that respectively furnishes mito the general circulation and forms mi,and hmi,the fraction of hepatic clearance responsible for the formation of mi.Moreover, the fraction of dose dmi converted to form miis defined with respect to the route of drug administration. The inherent assumption of these estimates, however, requires that the extent of sequential elimination of the generated mibe identical to the extent of metabolism of preformed mi.Discrepancies have been found, and may be attributed mostly to the uneven distribution of drug-metabolizing activities as well as to the presence of diffusional barriers. Other linear systems that involve miformation from multiple organs are briefly described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

D andMi :

the amounts of drug and the ith primary metabolitemi in the body

U:

amounts in urine

D 0 and Mi0 :

represent the doses of drug andmi, respectively

ia, iv, and pv; inf and pv,inf; and 1 and 2:

respectively, the single intraarterial, intravenous and intraportal administrations; chronic intravenous and intraportal infusions; and injections into compartments 1 and 2

D,ia;D,iv;D,pv;D,inf; andD,pv,inf; andD,1 andD,2:

the route of drug administration via intraarterial, intravenous, intraportal, chronic intravenous, and intraportal infusions; and input into compartments 1 and 2

Mi,iv;Mi,pv;Mi,inf;Mi,pv,inf; andM,2:

the route ofmi administration via intravenous, intraportal, chronic intravenous infusion, and chronic intraportal infusion, and input into compartment 2

k :

the overall elimination rate constant for drug

k e andk m :

the (urinary) excretion rate constant and the metabolic rate constant for drug

k m1,k m2, andk m3 :

the rate constants for the formation of the first, second, and third primary metabolites (m1,m2, andm3)

k m1,1,k m1,2, andk m1,3 :

the rate constants for the formation of the first primary metabolitem1 by the biotransformation organs 1, 2, and 3

k mi,x :

the general term for the rate constant for the formation of the ith primary metabolitemi by the xth organ of biotransformation

k f,mi :

the apparent formation rate constant that furnishes the available metabolitemi to the systemic circulation

k(mi):

the overall elimination rate constant for the ith primary metabolitemi

k e(mi) andk m(mi):

the rate constants for (urinary) excretion and metabolism formi

k e(m1),k e(m2), andk e(m3):

the (urinary) rate constants for excretion of the first, second, and third primary metabolitesm1,m2, andm3

k m (m1),k m (m2), andk m (m3):

the metabolic rate constants for the first, second, and third primary metabolitesm1,m2, andm3

F H :

the hepatic availability of drug

F H(mi),F(m1)1,F(m1)2, F(m1)3, and F(mi)x :

the hepatic availability ofmi, the availability of the first primary metabolitem 1 after the first, second, and third organs of biotransformation, and the availability of the ith primary metabolitemi after the xth organ for biotransformation

V andV(mi):

the volumes of distribution for drug andmi

CL,CL M,CL R, andCL H :

total body clearance and metabolic, renal, and hepatic clearances for drug

ss:

steady-state conditions

CL(mi):

the total body clearance ofmi

ss:

steadystate conditions

A e(∞):

the total amount of drug excreted unchanged into urine

A e(mi):

the cumulative amount ofmi excreted into urine up to the timet designated

A e(mi)(∞):

the total amount ofmi excreted into urine

A mi(∞):

the total amount ofmi in the body formed from the administration of drug

C andC(mi):

the concentrations of drug and metabolitemi in blood

ss:

steady-state conditions

AUC :

the area under the blood concentration-time curve for drug from time equals zero to infinity

AUC mi :

the area under the curve ofmi from time equals zero to infinity

f e,f x, andf m :

the fraction of total body clearance of an i.v. dose of drug that is excreted unchanged, removed by other mechanisms, and metabolized

f mi :

the fraction of total body clearance that furnishes the available metabolitemi to the systemic circulation

g mi :

the fraction of total body clearance that formsmi

h mi :

the fraction of hepatic clearance that formsmi

d mi :

the fraction of dose of drug that formsmi

Q HV :

total hepatic blood flow

References

  1. D. E. Drayer. Pharmacologically active drug metabolites: Therapeutic and toxic activities, plasma and urine data in man, accumulation in renal failure.Clin. Pharmacokin. 1:426–443 (1976).

    Article  CAS  Google Scholar 

  2. A. J. Atkinson, Jr. and J. M. Strong. Effect of active drug metabolites on plasma level-response correlations.J. Pharmacokin. Biopharm. 5:95–109 (1977).

    Article  CAS  Google Scholar 

  3. D. D. Breimer, R. Jochemsen, and H. H. von Albert. Pharmacokinetics of benzodiazepines. Short-acting vs. long acting.Arzneim. Forsch. 30:875–881 (1980).

    CAS  Google Scholar 

  4. D. D. Breimer. Pharmacokinetics and metabolism of various benzodiazepines used as hypnotics.Br. J. Clin. Pharmacol. 8:7S-13S (1979).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. V. Stella. Prodrugs: An overview and definition. In T. Higuchi and V. Stella (eds.),Pro-drugs As Novel Drug Delivery Systems (ACS Symposium Series 14), American Chemical Society Press, Washington, D.C., 1975, pp. 1–115.

    Chapter  Google Scholar 

  6. M. Rowland and G. T. Tucker. Symbols in pharmacokinetics.J. Pharmacokin. Biopharm. 8:497–507 (1980).

    Article  CAS  Google Scholar 

  7. K. S. Pang and K. C. Kwan. A commentary. Methods and assumptions in the kinetic estimation of metabolite formation.Drug Metab. Dispos. 11:79–84 (1983).

    CAS  PubMed  Google Scholar 

  8. K. S. Pang and K. C. Kwan. Erratum. Methods and assumptions in the kinetic estimations of metabolite formation.Drug Metab. Dispos. 12:674 (1984).

    Google Scholar 

  9. A. J. Cummings and B. K. Martin. Excretion and accrual of drug metabolites.Nature 200:1296–1297 (1963).

    Article  CAS  PubMed  Google Scholar 

  10. A. J. Cummings, B. K. Martin, and G. S. Park. Kinetic considerations relating to the accrual and elimination of drug metabolites.Br. J. Pharmacol. Chemother. 29:136–149 (1967).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. B. K. Martin. Treatment of data from drug urinary excretion.Nature 214:247–249 (1967).

    Article  CAS  PubMed  Google Scholar 

  12. K. S. Pang and J. R. Gillette. Sequential first-pass elimination of a metabolite derived from a precursor.J. Pharmacokin. Biopharm. 7:275–290 (1979).

    Article  CAS  Google Scholar 

  13. P. N. Bennett, L. J. Aarons, M. R. Bending, J. A. Steiner, and M. Rowland. Pharmacokinetics of lidocaine and its deethylated metabolite: Dose and time dependency in man.J. Pharmacokin. Biopharm. 10:265–281 (1982).

    Article  CAS  Google Scholar 

  14. K. S. Pang and J. R. Gillette. Metabolite pharmacokinetics; Methods for simultaneous estimates of elimination rate constants of a drug and its metabolites. A commentary.Drug Metab. Dispos. 8:39–43 (1980).

    CAS  PubMed  Google Scholar 

  15. J. B. Houston. Drug metabolite kinetics.Pharmacol. Ther. 15:521–552 (1982).

    Article  Google Scholar 

  16. K. S. Pang. Metabolite pharmacokinetics: The area under the curve of metabolite and the fractional rate of metabolism of a drug after different routes of administration for renally and hepatically cleared drugs and metabolites.J. Pharmacokin. Biopharm. 9:477–487 (1981).

    Article  CAS  Google Scholar 

  17. K. S. Pang and J. R. Gillette. Theoretical relationships between area under the curve and route of administration of drugs and their precursors for evaluating sites and pathways of metabolism.J. Pharm. Sci. 67:703–704 (1978).

    Article  CAS  PubMed  Google Scholar 

  18. J. B. Houston and G. Taylor. Drug metabolite concentration-time profiles—Influence of route of drug administration.Br. J. Clin. Pharmacol. 17:385–394 (1984).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. E. Lane and R. Levy. Metabolite to parent drug concentration ratio as a function of parent drug extraction ratio: Cases of nonportal route of administration.J. Pharmacokin. Biopharm. 9:489–496 (1981).

    Article  CAS  Google Scholar 

  20. P. J. M. Klippert and J. Noordhoek. The area under the curve of metabolites for drugs and metabolites cleared by the liver and extrahepatic organs. Its dependence on the administration route of precursor drug.Drug. Metab. Dispos. 13:97–101 (1985).

    CAS  PubMed  Google Scholar 

  21. M. Rowland, L. Z. Benet, and S. Riegelman. The compartment model for a drug and its metabolite: Application to acetylsalicylic acid pharmacokinetics.J. Pharm. Sci. 59:364–367 (1970).

    Article  CAS  PubMed  Google Scholar 

  22. J. Cobby, M. Mayersohn, and S. Selliah. Disposition kinetics in dogs of diethyldithiocarbamate, a metabolite of disulfiram.J. Pharmacokin. Biopharm. 6:369–387 (1978).

    Article  CAS  Google Scholar 

  23. I. H. Patel, R. H. Levy, and W. F. Trager. Pharmacokinetics of carbamazepine-10,11-epoxide before and after autoinduction in Rhesus monkeys.J. Pharmacol. Exp. Ther. 206:607–613 (1978).

    CAS  PubMed  Google Scholar 

  24. S. A. Kaplan, M. L. Jack, S. Cotler, and K. Alexander. Utilization of area under the curve to elucidate the disposition of an extensively biotransformed drug.J. Pharmacokin. Biopharm. 1:201–216 (1973).

    Article  CAS  Google Scholar 

  25. S. A. Kaplan, M. Lewis, M. A. Schwartz, E. Postma, S. Cotler, C. W. Abruzzo, and R. E. Weinfeld. Pharmacokinetic model for chlordiazepoxide HCl in the dog.J. Pharm. Sci. 59:1569–1574 (1970).

    Article  CAS  PubMed  Google Scholar 

  26. H. Boxenbaum and S. Riegelman. Pharmacokinetics of isoniazid and some metabolites in man.J. Pharmacokin. Biopharm. 4:287–325 (1976).

    Article  CAS  Google Scholar 

  27. K. S. Pang, K. Strobl, and J. R. Gillette. A method for the estimation of the fraction of a precursor that is converted to a metabolite in ratin vivo with phenacetin and acetaminophen.Drug. Metab. Dispos. 7:366–372 (1979).

    CAS  PubMed  Google Scholar 

  28. M. Gibaldi and D. Perrier.Pharmacokinetics, 2nd ed., Dekker, New York, 1982, pp. 344–345.

    Google Scholar 

  29. E. Lane and R. H. Levy. Predictions of steady-state behavior of metabolite from dosing of parent drug.J. Pharm. Sci. 69:610–612.

  30. W. F. Bayne and S. S. Huang. General method for evaluating the fraction of the irreversible organ clearance due to conversion of drug to a primary metabolite.J. Pharm. Sci. 74:722–726 (1985).

    Article  CAS  PubMed  Google Scholar 

  31. K. S. Pang and J. R. Gillette. Kinetics of metabolite formation and elimination in the perfused rat liver preparation: Differences between the elimination of preformed acetaminophen and acetaminophen formed from phenacetin.J. Pharmacol. Exp. Ther. 207:178–194 (1978).

    CAS  PubMed  Google Scholar 

  32. K. S. Pang and J. A. Terrell. Retrograde perfusion to probe the heterogeneous distribution of hepatic drug metabolizing enzymes in rats.J. Pharmacol. Exp. Ther. 216:339–346 (1981).

    CAS  PubMed  Google Scholar 

  33. K. S. Pang, L. Waller, M. G. Horning, and K. K. Chan. Metabolite kinetics: Formation of acetaminophen from deuterated and non-deuterated phenacetin and acetanilide on acetaminophen sulfation kinetics in the perfused rat liver preparation.J. Pharmacol. Exp. Ther. 222:14–19 (1982).

    CAS  PubMed  Google Scholar 

  34. K. S. Pang. The effect of intercellular distribution of drug-metabolizing enzymes on the kinetics of stable metabolite formation and elimination by liver: First-pass effects.Drug Metab. Rev. 14:61–76 (1983).

    Article  CAS  PubMed  Google Scholar 

  35. K. S. Pang and R. N. Stillwell. An understanding of the role of enzyme localization of the liver in metabolite kinetics: A computer simulation.J. Pharmacokin. Biopharm. 11:451–468 (1983).

    Article  CAS  Google Scholar 

  36. K. S. Pang, P. Kong, J. A. Terrell, and R. E. Billings. Metabolism of acetaminophen and phenacetin by isolated rat hepatocytes—A system in which the spatial organization inherent in the liver is disrupted.Drug Metab. Dispos. 13:42–50 (1985).

    CAS  PubMed  Google Scholar 

  37. K. S. Pang, H. Koster, I. C. M. Halsema, E. Scholtens, and G. J. Mulder, Aberrant pharmacokinetics of harmol in the perfused rat liver preparation: Sulfate and glucuronide conjugations.J. Pharmacol. Exp. Ther. 219:134–140 (1981).

    CAS  PubMed  Google Scholar 

  38. K. S. Pang, H. Koster, I. C. M. Halsema, E. Scholtens, G. J. Mulder, and R. N. Stillwell. Normal and retrograde perfusion of the liver to probe the zonal distribution of sulfation and glucuronidation activities of harmol in the perfused rat liver preparation.J. Pharmacol. Exp. Ther. 224:647–653 (1983).

    CAS  PubMed  Google Scholar 

  39. J. G. Conway, F. C. Kauffman, S. Ji, and R. G. Thurman. Rates of sulfation and glucuronidation of 7-hydroxycoumarin in periportal and pericentral regions of the liver lobule.Mol. Pharmacol. 22:509–516 (1982).

    CAS  PubMed  Google Scholar 

  40. J. R. Dawson, J. G. Weitering, G. J. Mulder, R. N. Stillwell, and K. S. Pang. Alteration of transit time and direction of flow to probe the heterogeneous distribution of conjugating activities for harmol in the perfused rat liver preparation.J. Pharmacol. Exp. Ther. 234:691–699 (1985).

    CAS  PubMed  Google Scholar 

  41. X. Xu, B. K. Tang, and K. S. Pang. Metabolism of salicylamide in the once-through perfused rat liver preparation: Compensation by glucuronidation and hydroxylation for sulfation.Fed. Proceedings 44, Abstract no. 4945 (1985).

    Google Scholar 

  42. J. R. Gillette. Pharmacokinetics of biological activation and inactivation of foreign compounds. In M. W. Anders (ed.),Bioactivation of Foreign Compounds, Academic Press, New York, 1985, pp. 29–70.

    Google Scholar 

  43. K. S. Pang, W. F. Cherry, J. A. Terrell, and E. H. Ulm. Disposition of enalapril and its diacid metabolite, enalaprilat, in a perfused rat liver preparation.Drug Metab. Dispos. 12:309–313 (1984).

    CAS  PubMed  Google Scholar 

  44. K. S. Pang and J. R. Gillette. A theoretical examination of the effects of gut wall metabolism, hepatic elimination, and enterohepatic recycling on estimates of bioavailability and of heptic blood flow.J. Pharmacokin. Biopharm. 6:355–367 (1978).

    Article  CAS  Google Scholar 

  45. H.-S. Lin, R. H. Levy, E. A. Lane, and W. P. Gordon. Variability in the determination of fraction metabolized in a triangular metabolic problem and its resolution with stable isotope methodology.J. Pharm. Sci. 73:285–287 (1984).

    Article  CAS  PubMed  Google Scholar 

  46. D. Perrier, J. J. Ashley, and G. Levy. Effect of end product inhibition on kinetics of drug elimination.J. Pharmacokin. Biopharm. 1:231–242 (1973).

    Article  CAS  Google Scholar 

  47. R. H. Levy, A. A. Lai, and M. S. Dumain. Time-dependent kinetics. IV: Pharmacokinetic theory of enzyme induction.J. Pharm. Sci. 68:398–399 (1979).

    Article  CAS  PubMed  Google Scholar 

  48. R. E. Galinsky and G. Levy. Dose- and time-dependent elimination of acetaminophen in rats: Pharmacokinetic implications of cosubstrate depletion.J. Pharmacol. Exp. Ther. 219:14–20 (1981).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported by the Medical Research Council of Canada, Faculty Development Award DG 262, 263, and 264.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pang, K.S. A review of metabolite kinetics. Journal of Pharmacokinetics and Biopharmaceutics 13, 633–662 (1985). https://doi.org/10.1007/BF01058905

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01058905

Key words

Navigation