Skip to main content

Advertisement

Log in

Ecological mechanisms important for the biotic changes in acidified Lakes in Scandinavia

  • Published:
Archives of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

We describe some mechanisms behind the biotic changes in acidified lakes in Scandinavia. Besides direct effects, such as reduced reproduction or survival of fish and invertebrates due to low pH or exposure to toxic metals, we emphasize the importance of indirect effects. Mechanisms involved are of an ecological character; such as a shift of top predatores from fish to invertebrates and a reduced decomposition rate due to decreased abundance of detrivores, as well as feed-back effects on the abiotic environment; such as reduced productivity and turnover rate of nutrients and an increase in water transparency. We include the aspects of how bird species in aquatic habitats may be indirectly affected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Almer B, Dickson W, Ekström C, Hörnström E, Miller U (1974) Effects of acidification on Swedish lakes. Ambio 3:30–36

    Google Scholar 

  • Almer B, Dickson W, Ekström C, Hörnström E (1978) Sulphur pollution and the aquatic ecosystem. In: Nriagu JO (ed) Sulphur in the environment: Part II, ecological impacts. John Wiley & Sons, New York, pp 271–311

    Google Scholar 

  • Andersson G (1985) Decomposition of alder leaves in acid lake waters. Ecol Bull (Stockholm) 37:293–299

    Google Scholar 

  • Andersson G, Berggren H, Cronberg G, Gelin C (1978) Effects of planktivorous and benthivorous fish on organisms and water chemistry in eutrophic lakes. Hydrobiologia 59:9–15

    Google Scholar 

  • Andrén C, Henrikson L, Olsson M, Nilson G (1988) Effects of pH and aluminium on embryonic and early larval stages of Swedish brown frogs (Rana arvalis, R. temporaria andR. dalmatina). Holarct Ecol 11:in press

  • Appelberg M (1985) Early development of the crayfishAstacus astacus L. in acid water. Rep Inst Freshw Res Drottningholm 61:48–59

    Google Scholar 

  • Barr JF (1986) Population dynamics of the Common Loon (Gavia immer) associated with mercury-contaminated waters in northwestern Ontario. Canadian Wildlife Service, Occasional Paper No. 56

  • Beamish RJ, Harvey HH (1972) Acidification of the LaCloche mountain lakes, Ontario, and resulting fish mortalities. J Fish Res Board Can 29:1131–1143

    Google Scholar 

  • Bendell BE, McKicol DK (1987) Fish predation, lake acidity, and the composition of aquatic insect assemblages. Hydrobiologia 150:193–202

    Google Scholar 

  • Björklund I, Borg H, Johansson K (1984) Mercury in Swedish lakes—its regional distribution and causes. Ambio 13:118–121

    Google Scholar 

  • Borg H (1983) Trace metals in Swedish natural fresh waters. Hydrobiologia 101:27–34

    Google Scholar 

  • Carriere, D, Fischer K, Peakall D, Anghern P (1986) Effects of dietary alumnium in combination with reduced calcium and phosphorus on Ring dove (Streptopelia risoria). Water Air Soil Pollut 30:757–764

    Google Scholar 

  • Dannevig A (1959) Nedborens innflytelse pa vassdragens surhet och pa fiskbestanden. Jaeger og Fisker 3:116–118

    Google Scholar 

  • Dermott RM (1985) Benthic fauna in a series of lakes displaying a gradient of pH. Hydrobiologia 128:31–38

    Google Scholar 

  • DesGranges JJ, Darveau M (1985) Effect of lake acidity and morphometry on the distribution of aquatic birds in southern Quebec. Holarct Ecol 8:181–190

    Google Scholar 

  • DesGranges JJ, Rodrigue J (1986) Influence of acidity and competition with fish on the development of ducklings in Quebec. Water Air Soil Pollut 30:743–750

    Google Scholar 

  • Dickson W (1978) Some effects of acidification of Swedish lakes. Verh Internat Verein Limnol 20:851–856

    Google Scholar 

  • - (1986) Critical loads for nitrogen on surface waters. In: Nilsson J (ed) Critical loads for sulphur and nitrogen. The Nordic Council of Ministers, Environmental Report 1986:11, pp 201–210

  • Eadie J McA, Keast A (1982) Do Goldeneye and Perch compete for food? Oecologia (Berl) 55:225–230

    Google Scholar 

  • Effler SW, Schafran GC, Driscoll CT (1985) Partitioning light attenuation in an acidified lake. Can J Fish Aquat Sci 42:1707–1711

    Google Scholar 

  • Eriksson MOG (1979) Competition between freshwater fish and GoldeneyesBucephala clangula (L.) for common prey. Oecologia (Berl) 41:99–107

    Google Scholar 

  • — (1983) The role of fish in the selection of lakes by nonpiscivorous ducks: Mallard, Teal, and Goldeneye. Wildfowl 34:27–32

    Google Scholar 

  • — (1984) Acidification of lakes: Effects on waterbirds in Sweden. Ambio 13:260–262

    Google Scholar 

  • — (1985) Prey detectability for fish-eating birds in relation to fish density and water transparency. Ornis Scand 16:1–7

    Google Scholar 

  • — (1987) Some effects of freshwater acidification on birds in Sweden. ICBP Technical Publication No 6:183–190

    Google Scholar 

  • Eriksson MOG, Henrikson L, Oscarson HG (1988) Metal contents in liver tissues of non-fledged GoldeneyeBucephala clanqula ducklings: A comparison between samples from acidified, circumneutral, and limed lakes in South Sweden. Arch Environ Contam Toxicol (in press)

  • Eriksson MOG, Henrikson L, Nilsson B-I, Nyman HG, Oscarson HG, Stenson JAE, Larsson PK (1980) Predatorprey relations important for biotic changes in acidified lakes. Ambio 9:248–249

    Google Scholar 

  • Esjmont-Karabin J (1984) Phosphorus and nitrogen excretion by lake zooplankton (Rotifers and Crustaceans) in relationship to individual body weights of the animals, ambient temperature and presence or absence of food. Ekol pol 32:3–42

    Google Scholar 

  • Friberg F, Otto C, Svensson BS (1980) Effects of acidification on the dynamics of allochthonous leaf material and benthic invertebrate communities in running waters. In: Drablös D, Tollan A (eds) Proc of an international conference Sandefjord Norway. SNSF Project Norway, pp 304–305

  • Gahnström G (1985) Sediment oxygen uptake in acidified Lake Gårdsjön, Sweden. Ecol Bull (Stockholm) 37:276–286

    Google Scholar 

  • Grahn O (1985) Macrophyte biomass and production in Lake Gårdsjön, an acidified clearwater lake in SW Sweden. Ecol Bull (Stockholm) 37:203–212

    Google Scholar 

  • Grahn O, Hultberg H, Landner L (1974) Oligotrophication—a self-accelerating process subjected to excessive supply of acid substances. Ambio 3:93–94

    Google Scholar 

  • Hanzen PW (1987) Acid rain and waterfowl. Izaak Wallon League of America, Minneapolis and Arlington

    Google Scholar 

  • Harvey HH (1980) Widespread and diverse changes in the biota of North American lakes and rivers coincident with acidification. In: Drablös D, Tollan A (eds) Ecological impact of acid precipitation, SNSF project, Oslo-As, pp 93–98

    Google Scholar 

  • Hasselrot B (1985) Abborryngel som mätare av kvicksilverföroreningen. Institutet för vatten-och luftvårdsforskning, Göteborg, Report B 795:1–27 (In Swedish)

    Google Scholar 

  • Havas M (1985) Alumnium bioaccumulation and toxicity toDaphnia magna in soft water at low pH. Can J Fish Aquat Sci 42:1741–1748

    Google Scholar 

  • Havas M, Hutchinson TC (1982) Aquatic invertebrates from the Smoking Hills, N.W.T.: Effect of pH and metals on mortality. Can J Fish Aquat Sci 39:890–903

    Google Scholar 

  • Havas M, Likens GE (1985) Changes in22Na influx and outflux inDaphnia magna (Straus) as a function of elevated Al concentrations in soft water at low pH, Proc Natl Acad Sci USA 82:7345–7349

    Google Scholar 

  • Henrikson B-I (1988) The absence of antipredator behaviour in the larva ofLeucorrhinia dubia (Odonata) and the consequences for their distribution. Oikos 51:179–383

    Google Scholar 

  • Henrikson L, Nyman HG, Oscarson HG, Stenson JAE (1980) Trophic changes, without changes in the external nutrient loading. Hydrobiologia 68:257–263

    Google Scholar 

  • Henrikson L, Oscarson HG (1981) Corixids (Hemiptera-Heteroptera), the new top predators in acidified lakes. Verh Internat Verein Limnol 21:1616–1620

    Google Scholar 

  • Herrmann J (1987) Aluminium impact on freshwater invertebrates at low pH: A review. In: Landner L (ed) Speciation of metals in water, sediment, and soil systems. Lecture notes in earth sciences, Springer, Berlin, 11:157–175

    Google Scholar 

  • Hultberg H and Stenson JAE (1970) Försurningens effekter på fiskfaunan i två bohuslänska småsjöar. Fauna och flora 65:11–20

    Google Scholar 

  • Hunter ML Jr, Jones JJ, Gibbs KE, Moring JR (1986) Duckling responses to lake acidification: Do black ducks and fish compete? Oikos 47:26–32

    Google Scholar 

  • Jansson M, Olsson H, Broberg O (1981) Characterization of acid phosphatases in the acidified Lake Gårdsjön, Sweden. Arch Hydrobiol 92:377–395

    Google Scholar 

  • Johansson K (1980) Heavy metals in acid woodland lakes. Statens Naturvårdsverk PM 1359:1–70 (In Swedish, English summary)

    Google Scholar 

  • Johnson DM, Crowley PH (1980) Odonate “hide and seek”: Habitat-specific rules? In: Kerfoot WC (ed) Evolution and ecology of zooplankton communities. University Press of New England, Hanover, pp 569–579

    Google Scholar 

  • Kelly CA, Rudd JWM, Furutani A, Schindler DW (1984) Effects of lake acidification on rates of organic matter decomposition in sediments. Limnol Oceanogr 29:687–694

    Google Scholar 

  • Lazarek S (1985) Epiphytic algal production in the acidified Lake Gårdsjon, SW Sweden. Ecol Bull (Stockholm) 37:213–218

    Google Scholar 

  • Leivestad H, Hendrey G, Munia IP, Snekvik E (1976) Effects of acid precipitation on freshwater organisms. In: Braekke FH (ed) Impact of acid precipitation on forest and freshwater ecosystems in Norway. SNSF Project, Norway FR 6/76, pp 87–111

    Google Scholar 

  • Malley DF (1980) Decreased survival and calcium uptake by the crayfishOronectes virilis in low pH. Can J Fish Aquatic Sci 37:364–372

    Google Scholar 

  • McNicol DK, Blancher PJ, Bendell BE (1987) Waterfowl as indicators of wetland acidification in Ontario. ICBP Technical Publication No 6:149–166

    Google Scholar 

  • Muniz IP, Leivestad H (1980) Acidification-effects on freshwater fish. In: Drablös D, Tollan (eds) Ecological impact of acid precipitation, SNSF project, Oslo-Ås, pp 84–92

    Google Scholar 

  • Nilssen JP, östdahl T, Potts WTW (1984) Species replacements in acidified lakes: Physiology, predation or competition? Rep Inst Freshw Res Drottnigholm 61:148–153

    Google Scholar 

  • Nilsson BI (1981) Susceptibility of some odonate larvae to fish predation. Verh Internat Verein Limnol 21:1612–1615

    Google Scholar 

  • Nyholm NEI (1981) Evidence of involvement of aluminium in causation of defective formation of eggshells and impaired breeding in wild passerine birds. Environ Res 26:363–371

    Google Scholar 

  • Nyholm NEI, Myhrberg HE (1977) Severe eggshell defects and impaired reproductive capacity in small passerines in Swedish Lapland. Oikos 29:336–341

    Google Scholar 

  • Nyman HG, Oscarson HG, Stenson JAE (1985) Impact of invertebrate predators on the zooplankton composition in acid forest lakes. Ecol Bull (Stockholm) 37:239–243

    Google Scholar 

  • Økland J, Kuiper JGJ (1980) Distribution of small mussels (Sphaeridae) in Norway, with notes on their ecology. Haliotis 10:109

    Google Scholar 

  • Økland J, Økland KA (1986) The effects of acid deposition on benthic animals in lakes and streams. Experientia 42:471–486

    Google Scholar 

  • Pehrsson O (1979) Feeding behaviour, feeding habitat utilization, and feeding efficiency of mallard ducklings (Anas platyrhynchos) as guided by a domestic duck. Swedish Wildlife Research 10:191–218

    Google Scholar 

  • — (1984) Relationships of food to spatial and temporal breeding strategies of Mallards in Sweden. J Wildl Manage 48:322–339

    Google Scholar 

  • Persson G, Borberg O (1985) Nutrient concentrations in the acidified Lake Gårdsjön: The role of transport and retention of phosphorus, nitrogen, and DOC in watershed and lake. Ecol Bull (Stockholm) 37:158–175

    Google Scholar 

  • Peters RH (1975) Phosphorus regeneration by natural populations of limnetic zooplankton. Verh Internat Ver Limnol 19:273–279

    Google Scholar 

  • Potts WTW, Fryer G (1979) The effects of pH and salt content on sodium balance inDaphnia magna andAcantioleberis curvirostris (Crustacea: Caldocera). J Comp Physiol 129:289–294

    Google Scholar 

  • Pritchard G (1964) The prey of dragonfly larvae (Odonata: Anisoptera) in ponds in northern Alberta. Can J Zool 42:785–800

    Google Scholar 

  • Schindler DW (1980) Experimental acidification of a whole lake: A test of the oligotrophication hypothesis. In: Drablös D, Tollan A (eds) Ecological impact of acid precipitation, SNSF project, Oslo-As, pp 370–374

    Google Scholar 

  • Schindler DW, Hesslein RH, Wagemann R (1980) Effects of acidification on mobilization of heavy metals and radionuclides from the sediment of a freshwater lake. Can J Fish Aquat Sci 37:373–377

    Google Scholar 

  • Statens Natuvårdsverk (1981) Monitor 1981: Försurning av mark och vatten (Swedish). Stockholm

  • Stenson JAE (1972) Fish predation effects on the species composition of the zooplankton community in eight small forest lakes. Rep Inst Freshw Res Drottningholm 52:132–148

    Google Scholar 

  • — (1978) Differential predation by fish on two species ofChaoboms (Diptera, Chaoboridae). Oikos 31:98–101

    Google Scholar 

  • — (1981) The role of predation in the evolution of morphology, behaviour and life history of two species ofChaoboms. Oikos 37:323–327

    Google Scholar 

  • — (1985) Biotic structure and relations in the acidified Lake Gårdsjon system-A synthesis. Ecol Bull (Stockholm) 37:319–326

    Google Scholar 

  • Stenson JAE, Oscarson HG (1985) Crustacean zooplankton in the acidified Lake Gårdsjö system. Ecol Bull (Stockholm) 37:224–231

    Google Scholar 

  • Stenson JAE, Bohlin T, Henrickson L, Nilsson BI, Nyman HG, Oscarson HG, Larsson P (1978) Effects of fish removal from a small lake. Verh Internat Verein Limnol 20:794–801

    Google Scholar 

  • Traaen TS (1980) Effects of acidity on decomposition of organic matter in aquatic environments. In: Drablös D, Tollan A (eds) Ecological impact of acid precipitation, SNSF project, Oslo-As, pp 340–341

    Google Scholar 

  • Wren CD, Stokes PM (1986) Mercury levels in Ontario mink and otter relative to food levels and environmental acidification. Can J Zool 64:2854–2859

    Google Scholar 

  • Yan ND, Nero RW, Keller W, Lasenby DC (1985) AreChaoborus more abundant in acidified than in non-acidified lakes in Central Canada? Holarct Ecol 8:93–99

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stenson, J.A.E., Eriksson, M.O.G. Ecological mechanisms important for the biotic changes in acidified Lakes in Scandinavia. Arch. Environ. Contam. Toxicol. 18, 201–206 (1989). https://doi.org/10.1007/BF01056204

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01056204

Keywords

Navigation