Skip to main content
Log in

Nuclear morphometry and DNA densitometry of human gliomas by image analysis

  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

In 48 patients with gliomas in whom complete clinical follow-up was obtained, DNA ploidy was evaluated by using formalin-fixed paraffin-embedded tissues and by means of image analysis. The mean DNA indices, determined by averaging DNA indices of all tumor cells in a tumor, were mainly affected by mean DNA indices of the nuclei of SG2M phase tumor cell (including S phase and G2M phase cells) (SG2M DNA indices) and that mean DNA indices correlated with the SG2M phase fraction. The SG2M DNA indices and the percentage of tumor cells with S phase and G2M phase were higher in high grade gliomas including anaplastic glioma and glioblastoma multiforme than in low grade gliomas. Patients with G2M-hypertetraploid tumors demonstrated a shorter time to tumor progression than those with G2M-tetraploid in high grade glioma. Morphometrically, the nuclei of SG2M phase glioma cells were larger and more deformity than those of G0G1 phase (including G0 phase and G1 phase cells) cells. The G2M-hypertetraploid tumors were highly malignant and demonstrated large nuclei, greater nuclear deformity, and a higher proliferative potential. The G2M-tetraploid gliomas demonstrated a shorter time to tumor progression in cases whose the SG2M fraction was large. In contrast, G2M-hypotetraploid gliomas revealed an insignificant trend towards a longer time to tumor progression than those associated with tetraploid and hypertetraploid gliomas. We emphasize herein the prognostic importance of the SG2M phase cell, as well as other proliferation indices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bigner SH, Bjerkvig R, Laerum OD: DNA content and chromosomal composition of malignant human gliomas. Neurology Clinics 3: 769–783, 1985

    Google Scholar 

  2. Christov K, Zapryanov Z: Flow cytometry in brain tumors. I. ploidy abnormalities. Neoplasma 33: 49–55, 1986

    PubMed  Google Scholar 

  3. Hoshino T, Nomura K, Wilson CB, Knebel KD, Gray JW: The distribution of nuclear DNA from human brain-tumor cells: Flow cytometric studies. J Neurosurg 49: 13–21, 1978

    PubMed  Google Scholar 

  4. Kawamoto K, Herz F, Wolley RC, Hirano A, Koss LG: Flow cytometric analysis of the DNA content in cultured human brain tumor cells. Virchows Arch (Cell Pathol) 35: 11–17, 1980

    Google Scholar 

  5. Kawamoto K, Sakai N, Numa Y, Imahori T, Matsumura H: Significance of flow cytometric measurement of DNA-index in gliomas. Brain Tumor Pathol 8: 177–181, 1991

    Google Scholar 

  6. Giangaspero F, Chieco P, Lisignoli G, Burger PC: Comparison of cytologic composition with microfluormetric DNA analysis of the glioblastoma multiforme and anaplastic astrocytoma. Cancer 60: 59–65, 1987

    PubMed  Google Scholar 

  7. Kawamoto K, Herz F, Wolley RC, Hirano A, Kajikawa H, Koss LG: Flow cytometric analysis of DNA distribution in human brain tumors. Acta Neuropathol (Berl) 46: 39–44, 1979

    Google Scholar 

  8. Lehmann J, Krug H: Flow-through fluorocytophotometry of different brain tumors. Acta Neuropathol (Berl) 49: 123–132, 1980

    Google Scholar 

  9. Mork SJ, Laerum OD: Modal DNA content of human intracranial neoplasms studied by flow cytometry. J Neurosurg 53: 198–204, 1980

    PubMed  Google Scholar 

  10. Salmon I, Kiss R, Dewitte O, Gras T, Pasteels JL, Brotchi J, Flament-Durand J: Histopathologic granding and DNA ploidy in relation to survival among 206 adult astrocytic tumor patients. Cancer 70: 538–546, 1992

    PubMed  Google Scholar 

  11. Salmon I, Levivier M, Camby I, Rombaut K, Gras T, Pasteels JL, Brotchi J, Kiss R: Assessment of nuclear size, nuclear DNA content and proliferation index in stereotaxic biopsies from brain tumors. Neuropathology and Applied Neurobiology 19: 507–518, 1993

    PubMed  Google Scholar 

  12. Spaar FW, Ahyai A, Blech M: DNA-fluorescence cytometry and prognosis (grading) of meningiomas. A study of 104 surgically removed tumors. Neurosurg Rev 10: 35–39, 1987

    PubMed  Google Scholar 

  13. Kute TE, Muss HB, Hopkins M, Marshall R, Case D, Kammire L: Relationship of flow cytometry results to clinical and steroid receptor status in human breast cancer. Breast Cancer Res Treat 6: 113–121, 1985

    PubMed  Google Scholar 

  14. Auer G, Caspersson TO, Wallgren AS: DNA content and survival in mammary carcinoma. Anal Quant Cytol 2: 161–165, 1980

    PubMed  Google Scholar 

  15. Banner BF, Branczio L, Bahnson RR, Ernstoff MS, Taylor SR: DNA analysis of multiple synchronous renal cell carcinomas. Cancer 66: 2180–2185, 1990

    PubMed  Google Scholar 

  16. Becker RL, Mikel UV: Interrelation of formalin fixation, chromatin compactness and DNA values as measured by flow and image cytometry. Analytical and Quantitative Cytology and Histology 12: 333–341, 1990

    PubMed  Google Scholar 

  17. Cope C, Rowe D, Delbridge L, Philips J, Friedlander M: Comparison of image analysis and flow cytometric determination of cellular DNA content. J Clin Pathol 44: 147–151, 1991

    PubMed  Google Scholar 

  18. Davenport RD, Mckeever PE: Ploidy of endothelium in high-grade astrocytomas. Analytical and Quantitative Cytology and Histology 9: 25–29, 1987

    PubMed  Google Scholar 

  19. Greene DR, Taylor SR, Wheeler TM, Scardino PT: DNA ploidy by image analysis of individual foci of prostate cancer: a preliminary report: Cancer Res 51: 4084–4089, 1991

    PubMed  Google Scholar 

  20. Martin H, Voss K: Automated image analysis of glioblastomas and other gliomas. Acta Neuropathol (Berl) 58: 9–16, 1982

    Google Scholar 

  21. Martin H, Voss K: Computerized classification of gliomas by automated microscope pictur analysis (AMPA). Acta Neuropathol (Berl) 58: 261–268, 1982

    Google Scholar 

  22. Martin H, Vos K, Hufnagl P, Frolich K: Automated image analysis of gliomas an objective and reproducible method for tumor granding. Acta Neuropathol (Berl) 63: 160–169, 1984

    Google Scholar 

  23. Mikel UV, Becker RL: A comparative study of quantitative stains for DNA in image cytometry. Analytical and Quantitative Cytology and Histology 13: 253–259, 1991

    PubMed  Google Scholar 

  24. Mikel UV, Fishbein WN, Bahr GF: Some practical considerations in quantitative absorbance microspectro-photometry: Preparation techniques in DNA cytophotometry. Analytical and Quantitative Cytology and Histology 7: 107–118, 1985

    PubMed  Google Scholar 

  25. Saito A, Yoshii Y, Nose T: Image analysis of nuclear DNA content and morphometrical characteristics of the tumor cells in human astrocytomas. Brain Tumor Pathoi 11: 143–146, 1994

    Google Scholar 

  26. Salmon I, Kiss R, Levivier M, Remmelink M, Pasteels JL, Brotchi J, Flament-Durant J: Characterization of nuclear DNA content, proliferation index, and nuclear size in a series of 181 meningiomas, including benign primary, recurrent, and malignant tumors. Am J Surg Pathol 17: 239–247, 1993

    PubMed  Google Scholar 

  27. Schad LR, Schmitt HP, Oberwittler C, Lorenz WJ: Numerical granding of astrocytoma. MED INFORM 12: 11–22, 1987

    Google Scholar 

  28. Stockle M, Storkel S, Mielke R, Steinbach F, El-Damanhoury H, Voges G, Hohenfellner R: Characterization of conservatively resected renal tumors using automated image analysis DNA cytometry. Cancer 68: 1926–1931, 1991

    PubMed  Google Scholar 

  29. Ullen H, Falkmer UG, Collins VP, Auer GU: Methodologic aspects of nuclear DNA assessment of gliomas with astrocytic and/or oligodendrocytic differentiation. Correlation of image and flow cytometric studies on paraffin-embedded specimens. Analytical and Quantitative Cytology and Histology 13: 168–176, 1991

    PubMed  Google Scholar 

  30. Yoshii Y, Saito A, Tsuboi K, Tsurushima H, Komatsu Y, Tomono Y, Nose T: Nuclear characterization and G2M ploidy in human brain tumors using semiautomated image analysis. Brain Tumor Pathol 12: 61–67, 1995

    Google Scholar 

  31. Zaprianov Z, Christov K: Histological grading, DNA content, cell proliferation and survival of patients with astroglial tumors. Cytometry 9: 380–386, 1988

    PubMed  Google Scholar 

  32. Dressler LG: Controls, standards, and histogram interpretation in DNA flow cytometry. In: Darzynkiewicz Z, Crissman HA (eds) Flow Cytometry: Methods in Cell Biology Vol 33, Academic Press, Inc. San Diego, 1990, pp 157–171

    Google Scholar 

  33. Ahyai A, Spaar FW: DNA and prognosis of meningiomas: a comparative cytological and fluorescence-cytophotometrical study of 71 tumors. Acta Neurochirurgica 87: 119–128, 1987

    PubMed  Google Scholar 

  34. Appley AJ, Fitzgibbons PL, Chandrasoma PT, Hinton DR, Apuzzo M: Multiparameter flow cytometric analysis of neoplasms of the central nervous system: Correlation of nuclear antigen p105 and DNA content with clinical behavior. Neurosurgery 27: 83–96, 1990

    PubMed  Google Scholar 

  35. Broggi G, Franzini A, Costa A, Melcarne A, Allegranza A: Cell kinetics of neuroepithelial tumors in serial stereotactic biopsies. A new combined approach. Appl Neurophysiol 48: 472–476, 1985

    PubMed  Google Scholar 

  36. Coos SW, Davis JR, Way DL: Correlation of DNA content and histology in prognosis of astrocytomas. Am J Clin Pathol 90: 289–293, 1988

    PubMed  Google Scholar 

  37. Danova M, Giaretti W, Merlo F, Mazzini G, Gaetani P, Geido E, Gentile S, Butti G, Vincini AD, Riccardi A: Prognostic significance of nuclear DNA content in human neuroepithelial tumors. Int J Cancer 48: 663–667, 1991

    PubMed  Google Scholar 

  38. DeReuck J, Sieben G, DeCoster W, Roels H, Vander Eecken H: Cytophotometric DNA determination in human oligodendroglial tumors. Histopathology 4: 225–232, 1980

    PubMed  Google Scholar 

  39. Fitzgibbons PL, Turner RR, Appley AJ, Bishop PL, Nichols P, Epstein AL, Apuzzo ML, Chandrasoma PT: Flow cytometric DNA and nuclear antigen content in astrocytic neoplasms. Am J Clin Pathol 89: 640–644, 1988

    PubMed  Google Scholar 

  40. Hoshino T, Wilson CB, Eillis WG: Gemistocytic astrocytes in gliomas: An autoradiographic study. J Neuropathol Exp Neurol 34: 263–281, 1975

    PubMed  Google Scholar 

  41. Ironside JW, Battersby RDE, Lawry J, Loomes RS, Day CA, Timperley WR: DNA in meningioma tissues and explant cell cultures, a flow cytometric study with clinicopathology correlates. J Neurosurg 66: 588–594, 1987

    PubMed  Google Scholar 

  42. May PL, Broome JC, Lawry J, Buxtoh RA, Battersoy RD: The prediction of recurrence in meningiomas. A flow cytometric study of paraffin-embedded archival material. J Neurosurg 71: 347–351, 1989

    PubMed  Google Scholar 

  43. Nishizaki T, Orita T, Furutani Y, Ikeyama Y, Aoki H, Sasaki K: Flow cytometric DNA analysis and immunohistochemical measurement of Ki-67 and BUdr labeling indices in human brain tumors. J Neurosurg 70: 379–384, 1989

    PubMed  Google Scholar 

  44. Vindelov LL, Christensen IJ, Jensen G, Nissen NI: Limits of detection of nuclear DNA abnormalities by flow cytometric DNA analysis. Cytometry 3: 332–339, 1983

    PubMed  Google Scholar 

  45. Laerum OD, Farsund T: Clinical applications of flow cytometry. Cytometry 2: 1–13, 1981

    PubMed  Google Scholar 

  46. Shapiro WR, Shapiro JR: Principles of brain tumor chemotherapy. Semin Oncol 13: 56–69, 1986

    PubMed  Google Scholar 

  47. Frederiksen P, Raske-Nelson E, Bichel P: Flow cytometry in tumors of the brain. Acta Neuropathol (Berl) 41: 179–183, 1978

    Google Scholar 

  48. Hoshino T, Wilson CB: Cell kinetic analyses of human malignant brain tumors (gliomas). Cancer 44: 956–962, 1979

    PubMed  Google Scholar 

  49. Hoshino T, Townsend JJ, Muradea I, Wilson CB: An autoradiographic study of human gliomas: growth kinetics of anaplastic astrocytoma and glioblastoma multiforme. Brain 103: 967–984, 1980

    PubMed  Google Scholar 

  50. Hoshino T, Nagashima T, Murovic JA, Wilson CB, Edwards MS, Gutin PH, Davis RL, DeArmond S:In situ cell kinetics studies on human neuroectodermal tumors with bromodeoxyuridine labeling. J Neurosurg 64: 453–459, 1986

    PubMed  Google Scholar 

  51. Nagashima T, DeArmond SJ, Murovic J, Hoshino T: Immunocytochemical demonstration of S-phase cells by antibromodeoxyuridine monoclonal antibody in human brain tumor tissues. Acta Neuropathol (Berl) 67: 155–159, 1985

    Google Scholar 

  52. Yoshii Y, Maki Y, Tsuboi K, Tomono Y, Nakagawa K, Hoshino T: Estimation of growth fraction with bromodeoxyuridine in human central nervous system tumors. J Neurosurg 65: 659–693, 1986

    PubMed  Google Scholar 

  53. Yoshii Y, Narushiama K, Tsuboi K, Maki Y, Sugiyama K: Tumor cord and growth in human brain tumors based on mathematical morphology. J Neuro Oncol 6: 119–128, 1988

    Google Scholar 

  54. Yoshii Y, Sugiyama K: Intercapillary distance in the proliferating area of human glioma. Cancer Res 48: 2938–2941, 1988

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoshii, Y., Saito, A. & Nose, T. Nuclear morphometry and DNA densitometry of human gliomas by image analysis. J Neuro-Oncol 26, 1–9 (1995). https://doi.org/10.1007/BF01054763

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01054763

Key words

Navigation