Skip to main content
Log in

A multidimensional continued fraction and some of its statistical properties

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The problem of simultaneously approximating a vector of irrational numbers with rationals is analyzed in a geometrical setting using notions of dynamical systems theory. We discuss here a (vectorial) multidimensional continued-fraction algorithm (MCFA) of additive type, the generalized mediant algorithm (GMA), and give a geometrical interpretation to it. We calculate the invariant measure of the GMA shift as well as its Kolmogorov-Sinai (KS) entropy for arbitrary number of irrationals. The KS entropy is related to the growth rate of denominators of the Euclidean algorithm. This is the first analytical calculation of the growth rate of denominators for any MCFA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

L + :

set of positive integers

[.]:

Gauss integer symbol (Section 2)

h :

entropy

I :

of irrationals to be simultaneously approximated

d :

dimension of the vector of convergents (equal to I+1)

P :

unit hypercube inp dimensions

:

support of the invariant measure (see Section 5)

Eij :

elementary matrix, with klth componentδ kl +δ ik δ jl

E-string:

product of elementary matrices given by the algorithm

verticesV i :

corners of the elementary simplex adjoined to the origin (Section 3)

mediantsM ik :

a direct sum of any two of the vertices (Section 3)

focus:

sum of all the vertices (Section 3)

Euclidean:

reverse of the E-string procedure (see Section 2) algorithm

OCF:

ordinary continued-fraction algorithm

GMA:

generalized mediant algorithm: the subject of this paper

JP:

Jacobi-Perron: the most well-studied MCFA

MCFA:

Multidimensional continued-fraction algorithm

KS entropy:

Kolmogorov-Sinai entropy

T OCF :

ordinary continued-fraction shift map

FS :

Farey shift map

(a,..., z) :

irrational vector withI components; each element is an irrational

dμ(x) :

invariant measure

ρ(x) :

invariant density =dμ(x)/dx]

λ 1, λ2,...,λ d :

thed Oseledec eigenvalues of the E-string (see Section 4) ordered λ1>1>λ2⩾λ3⩾...

σ1,...,σd−1 :

Oseledec eigenvalues of the shift map (Section 4) ordered greatest to smallest; all the σi>1, and σi1d i+1

ln σ1,..., In σd− 1 :

Oseledecexponents of the shift map (Section 4)

Perm:

a permutation matrix (Section 4)

References

  1. H. Minkowski,Diophantische Approxiomationen (Leipzig, Teubner, 1982).

    Google Scholar 

  2. L. Bernstein,The Jacobi-Perron Algorithm and Its Application (Springer-Verlag, Berlin, 1980).

    Google Scholar 

  3. W. Schmidt,Diophantine Approximation (Springer-Verlag, Berlin, 1980).

    Google Scholar 

  4. L. K. Hua and W. Yuan,Applications of Number Theory to Numerical Analysis (Springer-Verlag, Berlin, 1981).

    Google Scholar 

  5. G. Hardy and E. M. Wright,An Introduction to the Theory of Numbers (Clarendon Press, Oxford, 1979).

    Google Scholar 

  6. A. Y. Khintchine,Continued Fractions (P. Nordhoff, Groningen, 1963);Compositio Mathematica 1:361–382 (1935);3:275–285 (1936); P. Lévy,Théorie de l'Addition des Variables Aléatives (Paris, 1937).

    Google Scholar 

  7. M. S. Waterman,Rocky Mtn. J. Math. 6:181 (1976).

    Google Scholar 

  8. F. Schweiger,Dynam. Syst. Ergodic Theory 23:283 (1989); F. Schweiger,The Metrical Theory of Jacobi-Perron Algorithm (Springer-Verlag, Berlin, 1973).

    Google Scholar 

  9. G. Szekeres,Ann. Univ. Sci. Budap. Rolando Eötvös Sect. Math. 13:113 (1970).

    Google Scholar 

  10. J. C. Lagarias, Geodesic multidimensional continued fractions,Acta Math.

  11. M. S. Waterman,Z. Wahrsch. Verw. Geb. 16:77 (1970).

    Google Scholar 

  12. Hao Bai-Lin,Chaos (World Scientific, Singapore, 1984).

    Google Scholar 

  13. M. Feigenbaum,J. Stat. Phys. 52:527 (1988); S. Ostlund and S. Kim,Physica Scripta T9:193–198 (1985); P. Cvitanovic, B. Shraiman, and B. Soderberg,Physica Scripta 32:263 (1985).

    Google Scholar 

  14. A. J. Brentjes,Multi-Dimensional Continued Fraction Algorithms (Mathematisch Centrum, Amsterdam, 1981).

    Google Scholar 

  15. L. K. Hua,Introduction to Number Theory (Springer-Verlag, Berlin, 1982).

    Google Scholar 

  16. J. Guckenheimer, B. Hu, and J. Rudnick, Quasiperiodic transitions to chaos with three incommensurate frequencies, Preprint (1982).

  17. S. Kim and S. Ostlund,Phys. Rev. Lett. 55:1165 (1985).

    Google Scholar 

  18. Y. Oono,Prog. Theor. Phys. 60:1944 (1978).

    Google Scholar 

  19. J.-P. Eckmann and D. Ruelle,Rev. Mod. Phys. 57:617 (1985).

    Google Scholar 

  20. V. I. Oseledec,Moscow Math. Soc. 19:197 (1968).

    Google Scholar 

  21. A. Crisanti, G. Paladin, and A. Vulpiani,Phys. Rev. A 39:6491 (1989); A. Crisanti, G. Paladin, and A. Vulpiani,J. Stat. Phys. 53:583 (1988); G. Paladin and A. Vulpiani,J. Phys. A 19:2033 (1986); G. Paladin and A. Vulpiani,J. Phys. A 21:363 (1988); G. Parisi and A. Vulpiani,J. Phys. A 21:363 (1988); J. Deutsch and G. Paladin,Phys. Rev. Lett. 62:695 (1989); A. Crisanti, G. Paladin, and A. Vulpiani,Phys. Rev. B 35:7164 (1987); K. Ravishankar,J. Stat. Phys. 54:531 (1989); J. P. Eckmann and C. E. Wayne,J. Stat. Phys. 50:853 (1988); B. Derrida, K. Mecheri, and J. L. Pichard,J. Phys. (Paris)48:733 (1987).

    Google Scholar 

  22. E. S. Selmer,Nord. Mat. Tidskr. 9:37 (1961); F. Schweiger,Ber. Öster. Akad. Wiss. Math. Naturw. Kl. Abt. II, Math. Phys. Tech. Wiss. 191:325 (1982).

    Google Scholar 

  23. P. R. Baldwin, A convergence exponent for multidimensional continued-fraction algorithms,J. Stat. Phys., this issue.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baldwin, P.R. A multidimensional continued fraction and some of its statistical properties. J Stat Phys 66, 1463–1505 (1992). https://doi.org/10.1007/BF01054430

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01054430

Key words

Navigation