Skip to main content
Log in

The abstract variable-binding calculus

  • Published:
Studia Logica Aims and scope Submit manuscript

Abstract

Theabstract variable binding calculus (VB-calculus) provides a formal frame-work encompassing such diverse variable-binding phenomena as lambda abstraction, Riemann integration, existential and universal quantification (in both classical and nonclassical logic), and various notions of generalized quantification that have been studied in abstract model theory. All axioms of the VB-calculus are in the form of equations, but like the lambda calculus it is not a true equational theory since substitution of terms for variables is restricted. A similar problem with the standard formalism of the first-order predicate logic led to the development of the theory of cylindric and polyadic Boolean algebras. We take the same course here and introduce the variety of polyadic VB-algebras as a pure equational form of the VB-calculus. In one of the main results of the paper we show that every locally finite polyadic VB-algebra of infinite dimension is isomorphic to a functional polyadic VB-algebra that is obtained from a model of the VB-calculus by a natural coordinatization process. This theorem is a generalization of the functional representation theorem for polyadic Boolean algebras given by P. Halmos. As an application of this theorem we present a strong completeness theorem for the VB-calculus. More precisely, we prove that, for every VB-theory T that is obtained by adjoining new equations to the axioms of the VB-calculus, there exists a model D such that ⊢T s=t iff ⊨D s=t. This result specializes to a completeness theorem for a number of familiar systems that can be formalized as VB-calculi. For example, the lambda calculus, the classical first-order predicate calculus, the theory of the generalized quantifierexists uncountably many and a fragment of Riemann integration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Andréka andI. Németi, ‘On systems of varieties definable by schemes of equations’,Algebra Universalis 1980,11 105–116.

    Google Scholar 

  2. H. Andréka, I. Németi andI. Sain, ‘Abstract model theoretic approach to algebraic logic’, 1984, (revised 1988, 1992), preprint.

  3. H. Andréka, I. Németi andI. Sain, ‘Applying algebraic logic to logic’, in:Algebraic Methodology and Software Technology (AMAST'93), (Proc. 3rd International Conference on Algebraic Methodology and Software Technology, University of Twente, The Netherlands, 21–25 June1993, (eds.) M. Nivat, C. Rattray, T. Rus and G. Scollo Algebraic Methodology and Software Technology (AMAST'93), Workshops in Computing, Springer-Verlag, London, 1994.

    Google Scholar 

  4. H. P. Barendregt,The lambda calculus. Its syntax and semantics, revised edition, Studies in Logic and the Foundations of Mathematics, North-Holland Publishing Co. Amsterdam 1985,103

    Google Scholar 

  5. W. J. Blok andD. Pigozzi,Algebraizable logics, Memoirs of the American Mathematical Society, Number 396, Amer. Math. Soc., Providence 1989.

    Google Scholar 

  6. Z. B. Diskin. ‘Polyadic algebras for non-classical logics, I,II,III,IV’, (in Russian),Latv. Mat. Ezgegodnik, to appear.

  7. Z. B. Diskin, ‘Lambda term systems’, preprint, Frame Inform. Systems, Riga, 1993.

    Google Scholar 

  8. Z. Diskin andI. Beylin, ‘Lambda substitution algebras’,Proc. 18th International Symposium on Mathematical Foundations of Computer Science, Lecture Notes in Computer Science 711, A. M. Borzyszkowski, S. Sokołowski (eds.), Springer-Verlag, Berlin 1993, 423–432.

    Google Scholar 

  9. J. Freedman, ‘Algebraic semantics for modal predicate logic’,Z. Math. Logik Grundlag. Math. 22 1976, 523–552.

    Google Scholar 

  10. G. Georgescu, ‘A representation theorem for tense polyadic algebras’,Mathematica (Cluj) 21 1979, 131–138.

    Google Scholar 

  11. G. Georgescu, ‘Modal polyadic algebras’,Bull. Math. Soc. Sci. Math. R. S. Roumainie (N.S.) 23 1979, 49–64.

    Google Scholar 

  12. G. Georgescu, ‘A Representation theorem for polyadic Heyting algebras’,Algebra Universalis 14 1982, 197–209.

    Google Scholar 

  13. P. Halmos, ‘Homogeneous locally finite polyadic Boolean algebras of infinite degree’,Fund. Math. 43 1956, 255–325, see also [14], pp. 97–166.

    Google Scholar 

  14. P. Halmos,Algebraic logic Chelsea Publishing Co., New York 1962.

    Google Scholar 

  15. L. Henkin, ‘An algebraic characterization of quantifiers’,Fund. Math. 37 1950, 63–74.

    Google Scholar 

  16. L. Henkin, J. D. Monk andA. Tarski,Cylindric algebras, Parts I and II, North-Holland Publishing Co., Amsterdam 1971, 1985.

    Google Scholar 

  17. R. Hindley andG. Longo, ‘Lambda-calculus models and extensionality’,Zeit. f. Math. Logik u. Grund. der Math. 1980,26 289–310.

    Google Scholar 

  18. H. J. Keisler, ‘Logic with the quantifier “there exist uncountably many”’,Ann. Math. Logic 1970,1 1–94.

    Google Scholar 

  19. J. Kotas andA. Pieczkowski, ‘On a generalized cylindrical algebra and intutionistic logic’,Studia Logica XVII 1966, 73–80.

    Google Scholar 

  20. A. R. Meyer, ‘What is a model of the lambda calculus?’,Inform. Control 52 1982, 87–122.

    Google Scholar 

  21. D. Monk, ‘Polyadic Heyting algebras’,Notices Amer. Math. Soc. 7 1960, 735.

    Google Scholar 

  22. A. Mostowski, ‘Proofs of non-deducibility in intuitionistic functional calculus’,J. Symbolic Logic 13 1948, 204–207.

    Google Scholar 

  23. J. A. Makowsky andS. Tulipani, ‘Some model theory for monotone quantifiers’,Arch. Math. Logic 18 1977, 115–134.

    Google Scholar 

  24. C. Pinter, ‘Cylindric algebras and algebras of substitution’,Trans. Amer. Math. Soc. 175 1973, 167–179.

    Google Scholar 

  25. D. Pigozzi andA. Salibra, ‘An introduction to lambda abstraction algebras’, in:IX Simposio Latinoamericano de Logica Matematica, Proc. Bahia Blanca, Argentina, 1992, (ed.) M. Abad, Notas de Logica Matematica, Instituto de Matematica. Universidad Nacional del Sur Bahia Blanca, Argentina.

  26. D. Pigozzi andA. Salibra, ‘Dimension-complemented lambda abstraction algebras’, in:Algebraic Methodology and Software Technology (AMAST'93) (Proc. 3rd International Conference on Algebraic Methodology and Software Technology, University of Twente, The Netherlands, 21–25 June 1993) Workshops in Computing, (eds.) M. Nivat, C. Rattray, T. Rus and G. Scollo, Springer-Verlag, London 1993, 131–138.

    Google Scholar 

  27. D. Pigozzi andA. Salibra, ‘Polyadic algebras over nonclassical logics’, in:Algebraic methods in logic and in computer science, Banach Center Publications28, (ed.) C. Rauszer, Polish Academy of Sciences, Warszawa 1993, 51–66.

    Google Scholar 

  28. D. Pigozzi andA. Salibra, ‘A representation theorem for lambda abstraction algebras,Proc. 18th International Symposium on Mathematical Foundations of Computer Science, Lecture Notes in Computer Science 711, A. M. Borzyszkowski, S. Sokołowski (eds.), Springer-Verlag, Berlin 1993, 629–639.

    Google Scholar 

  29. D. Pigozzi andA. Salibra, ‘Lambda abstraction algebras. Coordinatization of models of lambda calculus’, preprint, 1993.

  30. D. Pigozzi andA. Salibra, ‘Lambda abstraction algebras. Representation theorems’,Theoret. Comput. Sci. 140 1995, 5–52.

    Google Scholar 

  31. H. Rasiowa,An algebraic approach to non-classical logics North-Holland Publishing Co., Amsterdam 1974.

    Google Scholar 

  32. H. Rasiowa andR. Sikorski,The mathematics of metamathematics, Państwowe Wydawnictwo Naukowe, Warszawa 1963.

    Google Scholar 

  33. A. Salibra, ‘A general theory of algebras with quantifiers’, in:Algebraic Logic, (Proc. Conf. Budapest 1988) Colloq. Math. Soc. J. Bolyai, Vol.54, (eds.) H. Andréka, J. D. Monk, I. Németi, North-Holland Publishing Co., Amsterdam 1991, 573–620.

    Google Scholar 

  34. D. Schwartz, ‘Polyadic MV-algebras’,Z. Math. Logik Grundlag. Math. 26 1980, 561–564.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The work of the first author was supported in part by National Science Foundation Grant #DMS 8805870.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pigozzi, D., Salibra, A. The abstract variable-binding calculus. Stud Logica 55, 129–179 (1995). https://doi.org/10.1007/BF01053036

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01053036

Keywords

Navigation