Skip to main content
Log in

Comparison of six simulation models for the nitrogen cycle in the soil

  • Published:
Fertilizer research Aims and scope Submit manuscript

Abstract

Six simulation models on the soil nitrogen cycle are compared and discussed. To compare the accomplishments of the models they were run with the same data set. From the results it can be concluded that the main difficulties in modelling the soil nitrogen cycle lie in developing an adequate description of the microbiological transformations of nitrogen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Addiscott TM (1977) A simple computer model for leaching in structured soils. J Soil Sci 28: 554–563

    Google Scholar 

  2. Addiscott TM (1982) Computer assessment of the N status during winter and early spring of soils growing winter wheat. In Batey T, Vlassak K and Verstraeten LMJ, eds. Assessment of the nitrogen status of the soils, pp 15–26. University Press Leuven

    Google Scholar 

  3. Bakker Y, Withagen L and Wijnen G (1981) De nieuwe richtlijn voor de stikstofbemesting van suikerbieten. Bedrijfsontwikkeling 12:383–385

    Google Scholar 

  4. Becker FA and Aufhammer W (1982) Nitrogen fertilisation and methods of predicting the N requirements of winter wheat in the Federal Republic of Germany. Proc Fertiliser Society London, No 211:33–66

    Google Scholar 

  5. Beek J and Frissel MJ (1973) Simulation of nitrogen behaviour in soils. Wageningen: PUDOC

    Google Scholar 

  6. Boon R (1981) Stikstofadvies op basis van profielanalyse voor wintergraan en suikerbieten op diepe leem en zandleemgronden. Pedologie 21:347–363

    Google Scholar 

  7. Burns IG (1974) A model for predicting the redistribution of salts applied to fallow soils after excess rainfall or evaporation. J Soil Sci 25:165–178

    Google Scholar 

  8. Burns IG (1975) An equation to predict the leaching of surface-applied nitrate. J Agric Sci Camb 85:443–454

    Google Scholar 

  9. Burns IG (1976) Equations to predict the leaching of nitrate uniformly incorporated to a known depth or uniformly distributed throughout a soil profile. J Agric Sci Camb 86, 305–313

    Google Scholar 

  10. Dilz K (1981) The nitrogen fertilization of spring barley. Evaluation of fertilizer recommendations based on the analysis of mineral nitrogen in soil. Plant Soil 61:269–276

    Google Scholar 

  11. Dilz K, Darwinkel A, Boon R and Verstraeten LMJ (1982) Intensive wheat production as related to nitrogen fertilisation, crop protection and soil nitrogen: experience in the Benelux. Proc Fertiliser Society London, No 211, 93–124

    Google Scholar 

  12. Kortleven J (1963) Kwantitatieve aspecten van humusopbouw en humusafbraak. Versl Landbouwk Onderz, No 69.1

  13. Neeteson JJ and Smilde KW (1983) Correlative methods of estimating the optimum nitrogen fertilizer rate for sugar beet as based on soil mineral nitrogen at the end of the winter period. Proc symp “Nitrogen and Sugar Beet”, pp 409–421, IIRB, Brussels, 16–17 February 1983

    Google Scholar 

  14. Neeteson JJ, Wijnen G en Zandt PA (1984) Nieuwe stikstofbemestingsadviezen voor aardappelen. Bedrijfsontwikkeling 15, 331–333

    Google Scholar 

  15. Remy JC (1981) Etat actuel et perspectives de la mise en oeuvre des techniques de prévision de la fumure azotée. C R Ac Agr France 67, 859–874

    Google Scholar 

  16. Remy JC and Viaux Ph (1982) The use of nitrogen fertilisers in intensive wheat growing in France. Proc Fertiliser Society London, No 211, 67–92

    Google Scholar 

  17. Richter J, Scharpf HC und Wehrmann J (1978) Simulation der winterlichen Nitratverlagerung in Böden. Plant Soil 49, 381–393

    Google Scholar 

  18. Richter J, Nuske A, Böhmer M, and Wehrmann J (1980) Simulation of nitrogen mineralization and transport in Loess-Parabrownearthes: Plot experiments. Plant Soil 54, 329–337

    Google Scholar 

  19. Seligman NG and Keulen H van (1981) PAPRAN: A simulation model of annual pasture production limited by rainfall and nitrogen. In Frissel MJ and Veen JA van eds. Simulation of nitrogen behaviour of soil-plant systems, pp 192–221. Wageningen: PUDOC

    Google Scholar 

  20. Stanford G and Smith SJ (1972) Nitrogen mineralization potentials of soils. Soil Sci Soc Am Proc 36, 465–472

    Google Scholar 

  21. Veen JA van and Frissel MJ (1981) Simulation model of the behaviour of N in soil. In Frissel MJ and Veen JA van eds. Simulation of nitrogen behaviour of soilplant systems, pp 126–144. Wageningen: PUDOC

    Google Scholar 

  22. Wind GP (1979) Analog modeling of transient moisture flow in unsaturated soils. Diss Agric Univ Wageningen

  23. Wehrmann J und Scharpf HC (1979) Der Mineralstickstoffgehalt des Bodens als Massstab für den Stickstoffdüngerbedarf (Nmin-methode). Plant Soil 52, 109–126

    Google Scholar 

  24. Wehrmann J und Scharpf HC (1980) Der Mineralstickstoffgehalt des Bodens als Grundlage der Stickstoffdüngung bei Zuckerrüben. 43rd Wintercongress IIRB, Brussels, pp 327–341

    Google Scholar 

  25. Whitmore AP and Addiscott TM (1984) Computer simulation of changes in soil nitrogen during winter under a crop of winter wheat. In Neeteson JJ and Dilz K eds. Assessment of nitrogen fertilizer requirement. Second meeting. Haren (Gn): Institute for Soil Fertility (in press)

    Google Scholar 

  26. Zandt PA en Willigen P de (1981) Simulatie van de stikstofverdeling in de grond in winter en voorjaar. Inst Bodemvruchtbaarheid, Haren (Gn), Rapp 4-81

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Willigen, P., Neeteson, J. Comparison of six simulation models for the nitrogen cycle in the soil. Fertilizer Research 8, 157–171 (1985). https://doi.org/10.1007/BF01048899

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01048899

Key words

Navigation