Skip to main content
Log in

Relaxation oscillations in combustion models of thermal self-ignition

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

Combustion processes are classified into three types depending upon the amount of fuel supply: two of them are the stationary states with either low or high temperatures and the other is the periodic state with relaxation oscillation type. We analyze the dependency of these processes on the amount of fuel supply by using the fast and slow dynamics approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bebernes, J., and Eberly, D. (1989). Mathematical problems from combustion theory.Appl. Math. Sci. Vol. 83, Springer-Verlag, New York.

    Google Scholar 

  • Coppel, W. A., and Palmer, K. J. (1970). Averaging and integral manifolds.Bull. Austral. Math. Soc. 2, 197–222.

    Google Scholar 

  • Dancer, E. N. (1980). On the structure of solutions of an equation in catalysis theory when a parameter is large.J. Diff. Eq. 37, 404–437.

    Google Scholar 

  • Ei, S.-I. (1988). Two-timing methods with applications to heterogeneous reaction-diffusion systems.Hiroshima Math. J. 18, 127–160.

    Google Scholar 

  • Frank-Kamenetzky, D. A. (1955).Diffusion and Heat Exchange in Chemical Kinetics (translated by N. Thon), Princeton University Press, Princeton, N.J.

    Google Scholar 

  • Gavalas, G. R. (1968).Nonlinear Differential Equations of Chemically Reacting Systems, Springer-Verlag, New York.

    Google Scholar 

  • Gelfand, I. M. (1963). Some problems in the theory of quasilinear equations.AMS Translat. Ser. 2(29), 295–381.

    Google Scholar 

  • Giddas, B., Ni, W.-N., and Nirenberg, L. (1979). Symmetry and related properties via the maximum principle.Commun. Math. Phys. 68, 209–243.

    Google Scholar 

  • Hale, J. K. (1988). Asymptotic behavior of dissipative systems.Math. Surv. Monogr. 25, AMS.

  • Hastings, S. P., and McLeod, J. B. (1985). The number of solutions to an equation from catalysis.Proc. Roy. Soc. Edinburgh 101A, 15–30.

    Google Scholar 

  • Henry, D. (1981). Geometric theory of semilinear parabolic equations.Lecture Notes in Mathematics Vol. 840, Springer-Verlag, New York.

    Google Scholar 

  • Hirsh, M., Pugh, C., and Shub, M. (1977). Invariant manifolds.Lectures Notes in Mathematics Vol. 583, Springer-Verlag, New York.

    Google Scholar 

  • Matano, H., (1984). Existence of nontrivial unstable sets for equilibriums of strongly orderpreservinig systems.J. Fac. Sci. Univ. Tokyo Sec. IA 30(3), 645–673.

    Google Scholar 

  • Nagasaki, K., and Suzuki, T. (1991). On the nonlinear eigenvalue problemΔu+γe u=0.Trans. Am. Math. Soc. (in press).

  • Nayfeh, A. H. (1973).Perturbation Methods, Wiley-Interscience, New York.

    Google Scholar 

  • Parks, J. R. (1961). Criticality criteria for various configurations of a self-heating chemical as functions of activation energy and temperature of assembly.J. Chem. Phys. 34, 46–50.

    Google Scholar 

  • Parter, S. (1974). Solutions of a differential equation arising in chemical reactor process.SIAM J. Appl. Math. 26, 686–715.

    Google Scholar 

  • Parter, S. V., Stein, M. L., and Stein, P. R. (1975). On the multiplicity of solutions of a differential equation arising in chemical reactor theory.Stud. Appl. Math. 54, 293–314.

    Google Scholar 

  • Sattinger, D. H. (1972). Stability of solutions of nonlinear equations.J. Math. Anal. Appl. 39, 1–12.

    Google Scholar 

  • Sattinger, D. H. (1975). A nonlinear parabolic system in the theory of combustion.Q. Appl. Math. 33, 47–61.

    Google Scholar 

  • Tam, K. K. (1979). Construction of upper and lower solutions for a problem in combustion theory.J. Math. Anal. Appl. 69, 131–145.

    Google Scholar 

  • Wiebers, H. (1986). Critical behavior of nonlinear elliptic boundary value problems suggested by exothemic reactions.Proc. Roy. Soc. Edinburgh 102A, 19–36.

    Google Scholar 

  • Williams, L. R., and Leggett, R. W. (1979). Multiple fixed point theorems for the problems in chemical reactor theory.J. Math. Anal. Appl. 69, 180–193.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ei, S.I., Mimura, M. Relaxation oscillations in combustion models of thermal self-ignition. J Dyn Diff Equat 4, 191–229 (1992). https://doi.org/10.1007/BF01048160

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01048160

Key words

Navigation