Skip to main content
Log in

New lower bounds on the self-avoiding-walk connective constant

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We give an elementary new method for obtaining rigorous lower bounds on the connective constant for self-avoiding walks on the hypercubic lattice ℤd. The method is based on loop erasure and restoration, and does not require exact enumeration data. Our bounds are best for highd, and in fact agree with the first four terms of the 1/d expansion for the connective constant. The bounds are the best to date for dimensionsd⩾ 3, but do not produce good results in two dimensions. Ford=3, 4, 5, and 6, respectively, our lower bound is within 2.4%, 0.43%, 0.12%, and 0.044% of the value estimated by series extrapolation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. M. Hammersley and K. W. Morton, Poor man's Monte Carlo,J. Roy. Stat. Soc. B 16:23–38 (1954).

    Google Scholar 

  2. A. J. Guttmann, Bounds on connective constants for self-avoiding walks,J. Phys. A: Math. Gen. 16:2233–2238 (1983).

    Google Scholar 

  3. T. Hara and G. Slade, Self-avoiding walk in five or more dimensions. I. The critical behaviour,Commun. Math. Phys. 147:101–136 (1992).

    Google Scholar 

  4. T. Hara and G. Slade, The lace expansion for self-avoiding walk in five or more dimensions,Rev. Math. Phys. 4:235–327 (1992).

    Google Scholar 

  5. A. R. Conway and A. J. Guttmann, Lower bound on the connective constant for square lattice self-avoiding walks, preprint (1992).

  6. S. E. Alm, Upper bounds for the connective constant of self-avoiding walks, Preprint (1992), to appear inCombinatorics, Probability and Computing.

  7. A. J. Guttmann and I. G. Enting, The size and number of rings on the square lattice,J. Phys. A: Math. Gen. 21:L165–L172 (1988).

    Google Scholar 

  8. A. R. Conway, I. G. Enting, and A. J. Guttmann, Algebraic techniques for enumerating self-avoiding walks on the square lattice,J. Phys. A: Math. Gen. 26:1519–1534 (1993).

    Google Scholar 

  9. A. J. Guttmann, Private communication.

  10. A. J. Guttmann, On the zero-field susceptibility in thed=4,n=0 limit: Analysing for confluent logarithmic singularities,J. Phys. A: Math. Gen. 11:L103–L106 (1978).

    Google Scholar 

  11. A. J. Guttmann, Correction to scaling exponents and critical properties of then-vector model with dimensionality > 4,J. Phys. A: Math. Gen. 14:233–239 (1981).

    Google Scholar 

  12. T. Hara and G. Slade, The self-avoiding walk and percolation critical points in high dimensions, In preparation.

  13. N. Madras and G. Slade,The Self-Avoiding Walk (Birkhäuser, Boston, 1993).

    Google Scholar 

  14. M. E. Fisher and M. F. Sykes, Excluded-volume problem and the Ising model of ferromagnetism,Phys. Rev. 114:45–58 (1959).

    Google Scholar 

  15. F. Spitzer,Principles of Random Walk, 2nd ed. (Springer, New York, 1976).

    Google Scholar 

  16. G. F. Lawler,Intersections of Random Walks (Birkhäuser, Boston, 1991).

    Google Scholar 

  17. C. Domb and M. E. Fisher, On random walks with restricted reversals,Proc. Camb. Philos. Soc. 54:48–59 (1958).

    Google Scholar 

  18. J. M. Hammersley, The number of polygons on a lattice,Proc. Camb. Philos. Soc. 57:516–523 (1961).

    Google Scholar 

  19. J. M. Hammersley and D. J. A. Welsh, Further results on the rate of convergence to the connective constant of the hypercubical lattice,Q. J. Math. Oxford (2) 13:108–110 (1962).

    Google Scholar 

  20. H. Kesten, On the number of self-avoiding walks. II,J. Math. Phys. 5:1128–1137 (1964).

    Google Scholar 

  21. M. E. Fisher, Critical temperatures of anisotropic Ising lattices. II. General upper bounds,Phys. Rev. 162:480–485 (1967).

    Google Scholar 

  22. J. Fröhlich, B. Simon, and T. Spencer, Infrared bounds, phase transitions, and continuous symmetry breaking,Commun. Math. Phys. 50:79–95 (1976).

    Google Scholar 

  23. G. F. Lawler, A connective constant for loop-erased self-avoiding random walk,J. Appl. Prob. 20:264–276 (1983).

    Google Scholar 

  24. A. M. Ferrenberg and D. P. Landau, Critical behavior of the three-dimensional Ising model: A high resolution Monte Carlo study,Phys. Rev. B 44:5081–5091 (1991).

    Google Scholar 

  25. D. S. Gaunt, M. F. Sykes, and S. McKenzie, Susceptibility and fourth-field derivative of the spin-1/2 Ising model forT> Tc andd=4,J. Phys. A: Math. Gen. 12:871–877 (1979).

    Google Scholar 

  26. M. E. Fisher and D. S. Gaunt, Ising model and self-avoiding walks on hypercubical lattices and “high-density” expansions,Phys. Rev. 133:A224–A239 (1964).

    Google Scholar 

  27. A. M. Nemirovsky, K. F. Freed, T. Ishinabe, and J. F. Douglas, Marriage of exact enumeration and 1/d expansion methods: Lattice model of dilute polymers,J. Stat. Phys. 67:1083–1108 (1992).

    Google Scholar 

  28. B. C. Rennie, Random walks,Magyar Tud. Akad. Mat. Kut. Int. Kozlemen A 6:263–269 (1961).

    Google Scholar 

  29. J. M. Hammersley, Long chain polymers and self-avoiding random walks,Sankhya 25A:29–38 (1963).

    Google Scholar 

  30. T. Hara, Mean field critical behaviour for correlation length for percolation in high dimensions,Prob. Theory Rel. Fields 86:337–385 (1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hara, T., Slade, G. & Sokal, A.D. New lower bounds on the self-avoiding-walk connective constant. J Stat Phys 72, 479–517 (1993). https://doi.org/10.1007/BF01048021

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01048021

Key words

Navigation