Skip to main content
Log in

The determination of deep temperatures by means of the CO-CO2-H2-H2O geothermometer: an example using fumaroles in the Campi Flegrei, Italy

  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

Chromatographic analyses of fumarolic gases, collected in sampling bottles containing an alkaline solution, have been carried out using a thermal conductivity detector and a flame ionization detector, after catalytic conversion of CO and CH4. The latter method enables the concentration of carbon monoxide to be measured with sufficient accuracy for use in a CO-CO2-H2-H2O geothermometer. Application of this geothermometer to fumaroles in the crater of Solfatara in the Campi Flegrei, Italy, indicates that they are fed from a steam reservoir at 250±15 °C and at 10−36±2atm of oxygen. On the other hand, the CH4-CO2-H2-H2O geothermobarometer seems to re-equilibrate at superficial temperatures and cannot be used for infering thermodynamic conditions at depth. Regular sampling of these fumaroles together with a geothermometric interpretation of the gas analyses provides a means of monitoring, with comparative accuracy, the chemical and thermal evolution of the hydrothermal reservoir below the Solfatara crater. Such monitoring would probably detect an increase in temperature at depth and the injection of magmatic gas into the reservoir.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allard P (1983) The origin of hydrogen, carbon, sulphur, nitrogen and rare gases in volcanic exhalations: evidence from isotope geochemistry. In: Forecasting Volcanic Events. Tazieff H, Sabroux JC (eds). Amsterdam, Elsevier pp 337–386

    Google Scholar 

  • Barberi F, Corrado G, Innocenti F, Luongo G (1984) Phlegraean Fields 1982–1984: Brief chronicle of a volcano emergency in a densely populated area. Bull Volcano 47: 175–185

    Google Scholar 

  • Barin I, Knacke O (1973) Thermochemical Properties of Inorganic Substances. Springer Berlin Heidelberg New York 921 p

  • Barin I, Knacke O (1977) Thermochemical Properties of Inorganic Substances. Springer Berlin Heidelberg New York 861 p

  • Carapezza M, Nuccio PM, Valenza M (1984) Geochemical surveillance of the Solfatara of Pozzuoli (Phlegraean Fields) during 1983. Bull Volcanol 47: 303–311

    Google Scholar 

  • Cioni R, Corazza E (1981) Medium-temperature fumarolic gas sampling. Bull Volcanol 41: 23–29

    Google Scholar 

  • Cioni R, Corazza E, Marini L (1984) The gas/steam ratio as indicator of heat transfer at the Solfatara fumaroles, Phlegraean Fields (Italy). Bull Volcanol 47: 295–302

    Google Scholar 

  • D'Amore F, Panichi C (1980) Evaluation of deep temperatures of hydrothermal system by a new gas geothermometer. Geochim Cosmochim Acta 44: 549–556

    Google Scholar 

  • Eugster HP, Wones DR (1962) Stability relations of the ferruginuous biotite, annite. J Petrol 3: 82–125

    Google Scholar 

  • Giggenbach WF (1975) A simple method for collection and analysis of volcanic gases. Bull Volcanol 39: 132–145

    Google Scholar 

  • Hass Jr JL (1970) Fugacity of H20 from 0 ° to 350 °C at the liquid-vapor equilibrium and at 1 atmosphere. Geochim Cosmochim Acta 34: 929–931

    Google Scholar 

  • Hermance JF (1983) The Long Valley/Mono Basin volcanic complex in Eastern California: status of present knowledge and future research needs. Rev Geophys Space Phys 21: 1545–1565

    Google Scholar 

  • Irvine TF, Hartnett JP (1976) Steam and Air Tables in SI Units. McGraw Hill, New York, 127 p

    Google Scholar 

  • Istituto di Geocronologia e Geochimica Isotopica (CNR) (1984) Rapporto Osservatorio Vesuviano: Bradisismo Flegreo. Pisa 79 p

  • Marinelli G (1976) Geothermie et théories métallogénétiques. Ann Mines Belg 12: 1067–1074

    Google Scholar 

  • Martini M, Cellini Legittimo P, Piccardi G, Giannini L (1984) Composition of hydrothermal fluids during the bradyseismic crisis which commenced at Phlegraean Fields in 1982. Bull Volcanol 47: 267–273

    Google Scholar 

  • Matsuo S (1961) On the chemical nature of fumarolic gases of volcano Showa-shinzan, Hokkaido, Japan. J Earth Sci, Nagoya Univ 80–100

  • Matsuo S, Osaka J, Hirabayashi J, Ozawa T, Kimishima S (1982) Chemical nature of volcanic gases of Usu volcano in Japan. Bull Volcanol 45: 261–264

    Google Scholar 

  • McKee CO, Johnson RW, Lowenstein PL, Riley SJ, Blong RJ, De Saint Ours P, Talai B (1985) Rabaul Caldera, Papua New Guinea: volcanic hazards, surveillance and eruption contingency planning. Bull Volcanol Geotherm Res 23: 195–237

    Google Scholar 

  • Mestrel M (1983) Emissions de monoxide de carbone sur les sites geothermiques: etude du cas de Larderello (Italie). CFR 48 p unpublished report

  • Nuti S, Caprai A, Noto P (1985) Hypothesis on the origin of steam and on the deep temperature of the fluids of Pozzuoli Solfatara (Campania, Italy). In: 1985 International Symposium on Geothermal Energy, International Volume. Stone C (ed). Geothermal Resources Council

  • Piccardi G (1982) Fumaroles gas collection and analysis. Bull Volcanol 45: 257–260

    Google Scholar 

  • Sabroux JC (1979) Equilibre thermodynamique en phase gazeuse volcanique. In: Hautes Temperatures et Sciences de la Terre, Toulouse, Editions du CNRS, pp 37–46

  • Sabroux JC (1983) Volcano energetics: volcanic gases and vapours as geothermometers and geobarometers. In: Forecasting Volcanic Events. Tazieff H, Sabroux JC (eds), Amsterdam, Elsevier pp 17–25

    Google Scholar 

  • Wones DR, Gilbert MC (1969) The Fayalite-magnetite-quartz assemblage between 600 ° and 800 °C. Am J Sci 267-A: 480–488

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tedesco, D., Sabroux, J.C. The determination of deep temperatures by means of the CO-CO2-H2-H2O geothermometer: an example using fumaroles in the Campi Flegrei, Italy. Bull Volcanol 49, 381–387 (1987). https://doi.org/10.1007/BF01046631

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01046631

Keywords

Navigation