Skip to main content
Log in

Uplift-related retrogression history of aragonite marbles in Western Crete (Greece)

  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

In the low-grade, high-pressure (≈400°C, 10 kbar) metamorphic Phyllite-Quartzite Unit of Western Crete, widespread occurrences of aragonite marbles have been discovered recently. A sedimentary precursor is proved by relic structures (bedding, fossils). Partial or complete transformation of aragonite into calcite is ubiquitous. Compositional and microstructural features reflect the metamorphic history: (1) The high-pressure stage is documented by aragonite that is chemically characterized by incorporation of variable amounts of Sr and the lack of Mg. The most Sr-rich aragonite has about 9 wt% SrO (X aragSr =0.09). A compositional zoning observed in some aragonite crystals may be due to the prograde divariant calcite⇒aragonite transformation in the system CaCO3-SrCO3. Because the parent rocks probably were Sr-poor calcite limestones, one can speculate that strontium has been supplied from an external source under high-pressure conditions. (2) During uplift, calcite replacing aragonite did not equilibrate with unreplaced aragonite. Disequilibrium is indicated by highly variable compositions of calcite crystals that show topotactic relations to the host aragonite. The calcite compositions range from that of the host aragonite (Sr-rich and Mg-free) to Mg-bearing and Sr-poor. (3) Calcite that recrystallized during retrogression is generally Sr-poor (mean value ofX Sr<0.005), Mg-bearing (X Mg≈0.010), and chemically homogeneous. Because practically no Sr remains in the calcite, an interaction with a fluid phase is indicated. In fine-grained calcite marbles rich in solid organic matter, microstructural features indicative of former aragonite may be present. (4) The last stage of retrogression is documented by the appearance of radiating aragonite in veins and nodules. This aragonite, which shows neither deformation nor retrogression, was probably formed metastably in a near-surface environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Brothers RN (1970) Lawsonite-albite schists from Northernmost New Caledonia. Contrib Mineral Petrol 25:185–202

    Google Scholar 

  • Brown WH, Fyfe WS, Turner FJ (1962) Aragonite in California glaucophane schists, and the kinetics of the aragonite-calcite transformation. J Petrol 3:566–582

    Google Scholar 

  • Carlson WD (1980) The calcite-aragonite equilibrium: effects of Sr substitution and anion orientational disorder. Am Mineral 65:1252–1262

    Google Scholar 

  • Carlson WD, Rosenfeld JL (1981) Optical determination of topotactic aragonite-calcite growth kinetics: metamorphic implications. J Geol 89:615–638

    Google Scholar 

  • Chang LLY (1963) Subsolidus phase relations in the system BaCO3-SrCO3, SrCO3-CaCO3, and BaCO3-CaCO3. J Geol 73:346–368

    Google Scholar 

  • Chang LLY (1971) Subsolidus phase relations in the aragonite-type carbonates: I. The system CaCO3-SrCO3-BaCO3. Am Mineral 56:1660–1673

    Google Scholar 

  • Cogulu E (1967) Etude pétrographique de la région de Mihaliççik (Turquie). Schweiz Mineral Petrogr Mitt 47:683–825

    Google Scholar 

  • Coleman RG, Lee DE (1962) Metamorphic aragonite in the glaucophane schists of Cazadero, California. Am J Sci 260:557–595

    Google Scholar 

  • Evans BW, Misch P (1976) A quartz-aragonite-tale schist from the lower Skagit Valley, Washington. Am Mineral 61:1005–1008

    Google Scholar 

  • Franz L, Okrusch M (1992) Aragonite-bearing blueschists on Arki island, Dodecanese, Greece. Eur J Mineral 4:527–537

    Google Scholar 

  • Froese E (1970) Calculated phase relations in the system CaCO3-SrCO3. Can Mineral 10:665–676

    Google Scholar 

  • Froese E, Winkler HGF (1966) The system CaCO3-SrCO3 at high pressures and 500°C to 700°C. Can Mineral 8:551–566

    Google Scholar 

  • Füchtbauer H (1988) Sedimente und Sedimentgesteine. Schweizerbart, Stuttgart

    Google Scholar 

  • Gillet P, Goffé B (1988) On the significance of aragonite occurrences in the Western Alps. Contrib Mineral Petrol 99:70–81

    Google Scholar 

  • Glassley WE, Whetton JT, Cowan DS, Vance JA (1976) Significance of coexisting lawsonite, prehnite, and aragonite in the San Juan Islands, Washington. Geology 4:301–302

    Google Scholar 

  • Hoffmann C (1970) Die Glaukophangesteine, ihre stofflichen Äquivalente und Umwandlungsprodukte in Nordcalabrien (Süditalien). Contrib Mineral Petrol 27:283–320

    Google Scholar 

  • Hollister LS (1966) Garnet zoning: an interpretation based on the Rayleigh fractionation model. Science 154:1642–1651

    Google Scholar 

  • Johannes W, Puhan D (1971) The calcite-aragonite transition, reinvestigated. Contrib Mineral Petrol 31:28–38

    Google Scholar 

  • Kinsman DJJ, Holland HD (1969) The co-precipitation of cations with CaCO3-IV. The co-precipitation of Sr2+ with aragonite between 16° and 96°C. Geochim Cosmochim Acta 33:1–17

    Google Scholar 

  • Leitmeier H, Feigl F (1934) Eine einfache Reaktion zur Unterscheidung von Calcit und Aragonit. Tschermaks Mineral Petrogr Mitt N F 45:447–456

    Google Scholar 

  • McKee B (1962) Aragonite in the Franciscan rocks of the Pacheco Pass area, California. Am Mineral 47:379–387

    Google Scholar 

  • Milliman JD (1974) Marine carbonates: recent sedimentary carbonates, part 1. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Moore DE (1984) Metamorphic history of a high-grade blueschist exotic block from the Franciscan Complex, California. J Petrol 25:126–150

    Google Scholar 

  • Okay A (1982) Incipient blueschist metamorphism and metasomatism in the Tavsanli region, northwest Turkey. Contrib Mineral Petrol 79:361–367

    Google Scholar 

  • Powell R, Condliffe DM, Condliffe E (1984) Calcite-dolomite geothermometry in the system CaCO3-MgCO3-FeCO3: an experimental study. J Metamorphic Geol 2:33–41

    Google Scholar 

  • Sakakibara M (1986) A newly discovered high-pressure terrane in Eastern Hokkaido, Japan. J Metamorphic Geol 4:401–408

    Google Scholar 

  • Schubert W, Seidel E (1972) Glaukophangesteine aus dem Metamorphikum West-Kretas. Z Dtsch Geol Ges 123:371–384

    Google Scholar 

  • Sedlock RL (1988) Metamorphic petrology of a high-pressure, low-temperature subduction complex in west-central Baja California, Mexico. J Metamorphic Geol 6:205–233

    Google Scholar 

  • Seidel E (1977) Lawsonite-bearing metasediments in the Phyllite-Quartzite Series of SW Crete (Greece). Neues Jahrb Mineral Monatsh 130:134–144

    Google Scholar 

  • Seidel E (1978) Zur Petrologie der Phyllit-Quarzit-Serie Kretas. Habil Thesis, Tech Univ Brauschweig, Germany

  • Seidel E, Kreuzer H, Harre W (1982) A late Oligocene/early Miocene high-pressure belt in the external Hellenides. Geol Jahrb Reihe E 23:165–206

    Google Scholar 

  • Seidel E, Wachendorf H (1986) Die südägäische Inselbrücke. In: Jacobshagen V (ed) Geologie von Griechenland. Bornträger, Berlin, pp 54–80

    Google Scholar 

  • Suess E (1970) Interaction of organic compounds with calcium carbonate — I. Association phenomena and geochemical implications. Geochim Cosmochim Acta 34:157–168

    Google Scholar 

  • Suess E (1973) Interaction of organic compounds with calcium carbonate — II. Organo-carbonate association in recent sediments. Geochim Cosmochim Acta 37:2435–2447

    Google Scholar 

  • Takayama M (1986) Mode of occurrence and significance of jadeite in the Kamikatan metamorphic rocks, Hokkaido, Japan. J Metamorphic Geol 4:445–454

    Google Scholar 

  • Theye T (1988) Aufsteigende Hochdruckmetamorphose in Sedimenten der Phyllit-Quarzit-Einheit Kretas und des Peloponnes. Thesis, Tech Univ Braunschweig, Germany

  • Theye T, Seidel E (1991) Petrology of low-grade high-pressure metapelites from the External Hellenides (Crete Peloponnese): a case study with attention to sodic minerals. Eur J Mineral 3:343–366

    Google Scholar 

  • Theye T, Seidel E, Vidal O (1992) Carpholite, sudoite, and chloritoid in low-grade high-pressure metapelites from Crete and the Peloponnese, Greece. Eur J Mineral 4:487–507

    Google Scholar 

  • Vance JA (1968) Metamorphic aragonite in the prehnite-pumpellyite facies, Northwest Washington. Am J Sci 266:299–315

    Google Scholar 

  • Veizer J (1978) Strontium: abundance in common sediments and sedimentary rock types. In: Wedepohl KH (ed) Handbook of geochemistry, vol II-4, 38. Springer, Berlin Heidelberg New York, pp K1–13

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Theye, T., Seidel, E. Uplift-related retrogression history of aragonite marbles in Western Crete (Greece). Contr. Mineral. and Petrol. 114, 349–356 (1993). https://doi.org/10.1007/BF01046537

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01046537

Keywords

Navigation