Skip to main content
Log in

Glycoproteins and lectins in cell adhesion and cell recognition processes

  • Cell Components and Cell Function
  • Published:
The Histochemical Journal Aims and scope Submit manuscript

Summary

The discovery of endogenous lectins having specific and high affinity for the carbohydrate portions of glycoproteins has opened up new directions in the field of cell adhesion and cell recognition. Two endogenous lectins, termed as CSL and R1, initially isolated from the rat cerebellum and having a wide distribution in mammalian tissues, have been shown to participate in essential mechanisms of cell adhesion. The membrane-bound lectin R1 seems to be involved in transient recognition between neuronal cells, followed by elimination of the glycoprotein ligands at the surface of the recognized cell. In contrast, CSL is a molecule involved in adhesion between various normal or transformed cells since it participates in the formation of tight junctions. The glycoprotein ligands recognized with higher affinity by these two lectins seem to possess a special structure which defines a sub-class of oncofetal HNK-1 glycans. The over-expression of the glycoprotein ligands of these lectins in most transformed cells provides new tools for understanding the underlying mechanism of malignant transformation as well as the generation of signals through cell adhesion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albelda, S. M. &Buck, C. A. (1990) Integrins and other cell adhesion molecules.FASEB J. 4, 2868–80.

    Google Scholar 

  • Argraves, W. S., Suzuki, S., Arai, H., Thompson, K., Pierschbacher, M. D. &Ruoslahti, E. (1987). Amino acid sequence of the human fibronectin receptor.J. Cell Biol. 105, 1183–90.

    Google Scholar 

  • Baba, H., Sato, S., Inuzuka, T., Nishisawa M., Tanaka, M. &Miyatake, T. (1986). Characterization of the antigenic determinant on HSB-2 cells shared with myelin associated glycoprotein (MAG) using monoclonal antibodies.J. Neuroimmunol. 13, 89–97.

    Google Scholar 

  • Badache, A., Burger, D., Villarroya, H., Robert, Y., Kuchler, S., Steck, A. J. & Zanetta, J.-P. (1992). Carbohydrate moieties of MAG P0 and other myelin glycoproteins potentially involved in cell adhesion.Dev. Neurosci. (submitted).

  • Barbera-Guillem, E., Rocha, M., Alvarez, A. &Vidalvanaclocha, F. (1991) Differences in the lectin-binding patterns of the periportal and perivenous endothelial domains in the liver sinusoids.Hepatology 14, 131–9.

    Google Scholar 

  • Blaschuk, O. W., Sullivan, R., David, S. &Pouliot, Y. (1990). Identification of a cadherin cell adhesion recognition sequence.Develop. Biol. 139, 227–9.

    Google Scholar 

  • Bollensen, E. &Schachner, M. (1987) The peripheral myelin glycoprotein P0 expresses the L2/HNK-1 and L3 carbohydrate structures shared by neural adhesion molecules.Neurosci. Lett. 82, 77–82.

    Google Scholar 

  • Bon, S., Meflah, K., Musset, F., Grassi, J., &Massoulie, J. (1987) An immunoglobulin M monoclonal antibody, recognizing a subset of acetylcholinesterase molecules from electric organs ofElectrophorus andTorpedo belongs to the HNK-1 anti-carbohydrate family.J. Neurochem. 49, 1720–31.

    Google Scholar 

  • Campanero, M. R., Pulido, R., Ursa, M. A., Rodriguezmoya, M., Delandazuri, M. O. &Sanchezmadrid, F. (1990) An alternative leukocyte homotypic adhesion mechanism LFA-1/Icam-1-independent triggered through the human VLA-4 integrin.J. Cell Biol. 110, 2157–65.

    Google Scholar 

  • Chen, S. &Hillman, D. E. (1982) Plasticity of the parallel fiber-Purkinje cell synapse by spine takeover and new synapse formation in the adult rat.Brain Res. 240, 205–20.

    Google Scholar 

  • Chou, K. H., Ilyas, A. A., Evans, J. E., Quarles, R. H. &Jungalwala, F. B. (1985) Structure of a glycolipid reacting with monoclonal IgM in neuropathy and with HNK-1.Biochem. Biophys. Res. Commun. 128, 383–8.

    Google Scholar 

  • Crossin, K. L., Hoffman, S., Grumet, M., Thiery, J.-P. &Edelman, G. M. (1986) Site restricted expression of cytotactin during development of the chicken embryo.J. Cell Biol. 102, 1917–30.

    Google Scholar 

  • Daniloff, J. K., Chuong, C.-M., Levi, G. &Edelman, G. M. (1986) Differential distribution of cell adhesion molecules during histogenesis of the chick nervous system.J. Neurosci. 6, 739–58.

    Google Scholar 

  • Dontenwill, M., Devilliers, G., Langley, O. K., Roussel, G., Hubert, P., Reeber, A., Vincendon, G. &Zanetta, J.-P. (1983) Arguments in favour of endocytosis of glycoprotein components of the membranes of parallel fibers by Purkinie cells during the development of the rat cerebellum.Dev. Brain Res. 10 287–99.

    Google Scholar 

  • Dontenwill, M., Roussel, G. &Zanetta, J.-P. (1985) Immunohistochemical localization of a lectin like molecule R1 during the postnatal development of the rat cerebellum.Dev. Brain Res. 17, 245–52.

    Google Scholar 

  • D'Urso, D., Brophy, P. J., Staugaitis, S. M., Gillespie, C. S., Frey, A. B., Stempak, J. G. &Colman, D. (1990) Protein zero of peripheral nerve myelin. Biosynthesis membrane insertion and evidence for homotypic interaction.Neuron 4, 449–60.

    Google Scholar 

  • Edelman, G. M. (1986) Cell adhesion molecules in the regulation of form and tissue pattern.Ann. Rev. Cell. Biol. 2, 81–116.

    Google Scholar 

  • Espinosa de los Monteros, A., Roussel, G. &Nussbaum, J.-L. (1986) A procedure for long-term culture of oligodendrocytes.Dev. Brain Res. 24, 117–25.

    Google Scholar 

  • Fiezi, T. (1991). Carbohydrate differentiation antigens. Probable ligands for cell adhesion molecules.Trends Biochem. Sci. 16, 84–6.

    Google Scholar 

  • Filbin, M. T. &Tennekoon, G. I. (1990) High level of expression of the myelin protein-P0 in chinese hamster ovary cells.J. Neurochem.,55, 500–5.

    Google Scholar 

  • Filbin, M. &Tennekoon, G. I. (1991) Characterization of the functional domains of the myelin protein P0. Abstract of the 13th Meeting of the International Society for Neurochemistry, Sidney, Australia.J. Neurochem. 57 (suppl), S43.

    Google Scholar 

  • Filbin, M. T., Walsh, F. S., Trapp, B. D., Pizzey, J. A. &Tennekoon, G. I. (1990) Role of myelin P0 protein as a homophilic adhesion molecule.Nature 344, 871–2.

    Google Scholar 

  • Fressinaud, C., Kuchler, S., Sarlieve, L. L., Vincendon, G. &Zanetta, J.-P. (1988) Adhesion on a matrix made of the endogenous lectin CSL induces increased proliferation of oligodendrocytes.C. R. Acad. Sci. Paris, Série III 307, 863–8.

    Google Scholar 

  • Frixen, U. H., Behrens, J., Sachs, M., Eberle, G., Voss, B., Warda, A., Lochner, D. &Birchmeier, W. (1991) E-cadherin-mediated cell-cell adhesion prevents invasiveness of human carcinoma cells.J. Cell Biol. 113, 173–85.

    Google Scholar 

  • Furie, M. B., Tancinco, M. C. A. &Smith, C. W. (1991) Monoclonal antibodies to leukocyte integrin-CD11a/CD18 and integrin-CD11b/CD18 or intercellular adhesion molecule-1 inhibit chemoattractant-stimulated neutrophil transendothelial migration in vitro.Blood 78, 2089–97.

    Google Scholar 

  • Geoffroy, I. S. &Rosen, S. D. (1989). Demonstration that a lectin-like receptor (Gp90Mel) directly mediates adhesion of lymphocytes to high endothelial venules of lymph nodes.J. Cell Biol. 109, 2463–9.

    Google Scholar 

  • Ghersi, G. &Vittorelli, M. L. (1990) Immunological evidence for the presence in sea urchin embryos of a cell adhesion protein similar to mouse uvomorulin (E-cadherin).Cell Differentiation Develop. 31, 67–75.

    Google Scholar 

  • Glass II W. F., Briggs, R. C. &Hnilica, L. S. (1981) Use of lectins for detection of electrophoretically separated glycoproteins transferred onto nitrocellulose sheets.Anal. Biochem. 115, 219–24.

    Google Scholar 

  • Graham, R. C. &Karnovsky, M. J. (1966) The early stages of absorption of injected horseradish peroxidase in the proximal tubules of mouse kidney: ultrastructural cytochemistry by a new technique.J. Histochem. Cytochem. 14, 291–302.

    Google Scholar 

  • Hakomori, S. (1985) Aberrant glycosylation in cancer cell membranes as focused on glycolipids: overview and perspectives.Cancer Res. 45, 2405–14.

    Google Scholar 

  • Hakomori, S. (1989) Aberrant glycosylation in tumors and tumor-associated carbohydrate antigens.Adv. Cancer Res. 58, 257–331.

    Google Scholar 

  • Hansson, M., Odin, P., Johansson, S. &Obrink, B. (1990). Comparison and functional characterization of C-CAM glycoprotein-IIb/IIIa and integrin beta-1 in rat platelets.Thromb. Res. 58, 61–73.

    Google Scholar 

  • Hemler, M. E., Elices, M. J., Parker, C. &Takada, Y. (1990) Structure of the integrin VLA-4 and its cell-cell and cell-matrix adhesion functions.Immunol. Rev. 114, 45–65.

    Google Scholar 

  • Hemperly, J., Edelman, G. M. &Cunningham, B. A. (1986) cDNA clones of the neural cell adhesion molecule (N-CAM) lacking a membrane spanning region consistent with evidence for membrane attachment via a phosphatidylinositol intermediate.Proc. Natl. Acad. Sci. USA 83, 9822–6.

    Google Scholar 

  • Hibbs, M. L., Xu, H., Stacker, S. A., &Springer, T. A. (1991) Regulation of adhesion to ICAM-1 by the cytoplasmic domain of LFA-1 integrin beta-subunit.Science 251, 1611–3.

    Google Scholar 

  • Hynes, R. O. (1987) Integrins: a family of cell surface receptors.Cell 48, 549–54.

    Google Scholar 

  • Inuzuka, T., Quarles, R. H., Noronha, A. B., Dobersen, M. J. &Brady, R. O. (1984) A human lymphocyte antigen is shared with a group of glycoproteins in peripheral nerve.Neurosci. Lett. 51, 105–11.

    Google Scholar 

  • Jaikaria, N. S., Rosenfeld, L., Khan, M. Y., Danishefsky, I. &Newman, S. A. (1991) Interaction of fibronectin with heparin in model extracellular matrices. Role of arginine residues and sulfate groups.Biochemistry 30, 1538–44.

    Google Scholar 

  • Knudsen, K. A., Myers, L. &Mcelwee, S. A. (1990) A role for the Ca2+-dependent adhesion molecule, N-cadherin, in myoblast interaction during myogenesis.Exptl Cell Res. 188, 175–84.

    Google Scholar 

  • Kruse, J., Mailhammer, R., Wernecke, H., Faissner, A., Sommer, I., Goridis, C. &Schachner, M. (1984) Neural cell adhesion molecules and myelin associated glycoprotein share a common carbohydrate moiety recognized by monoclonal L2 and HNK-1.Nature 311, 153–5.

    Google Scholar 

  • Kuchler, S., Fressinaud, C., Sarlieve, L. L., Vincendon, G. &Zanetta, J.-P. (1988) Cerebellar soluble lectin is responsible for cell adhesion and participates in myeline compaction in cultured rat oligodendrocytes.Dev. Neurosci. 10, 199–212.

    Google Scholar 

  • Kuchler, S., Herbein, G., Sarlieve, L. L., Vincendon, G. &Zanetta, J.-P. (1989a) An endogenous lectin CSL interacts with major glycoprotein components in peripheral nervous system myelin.Cell Molec. Biol. 45, 33–43.

    Google Scholar 

  • Kuchler, S., Perraud, F., Sensenbrenner, M., Vincendon, G. &Zanetta, J.-P. (1989b) An endogenous lectin found in rat astrocyte cultures has a role in cell adhesion but not in cell proliferation.Glia 2, 437–45.

    Google Scholar 

  • Kuchler, S., Rougon, G., Marschal, P., Lehmann, S., Reeber, A., Vincendon, G. &Zanetta, J.-P. (1989c) Localization of a transiently expressed glycoprotein in developing cerebellum delineating its possible ontogenetic roles.Neurosci. 33, 111–24.

    Google Scholar 

  • Kuchler, S., Zanetta, J.-P., Zaepfel, M., Badache, A., Sarlieve, L., Gumpel, M., Baumann, N. &Vincendon, G. (1990) Endogenous cerebellar soluble lectin and its ligands in central nervous system myelin of quaking and jimpy mutant mice.Dev. Neurosci. 12, 382–97.

    Google Scholar 

  • Kuchler, S., Zanetta, J.-P., Bon, S., Zaepfel, M., Massoulie, J. &Vincendon, G. (1991a) Expression and localization in the developing cerebellum of the carbohydrate epitopes revealed by Elec-39 an IgM monoclonal antibody related to HNK-1.Neurosci. 41, 551–62.

    Google Scholar 

  • Kuchler, S., Zanetta, J.-P., Zaepfel, M., Badache, A., Sarlieve, L., Vincendon, G. &Matthieu, J.-M. (1991b) Endogenous lectin CSL and its ligands in the central nervous system myelin of myelin deficient (mld) mutant mice.J. Neurochem. 56, 436–45.

    Google Scholar 

  • Laemmli, U. K. (1970). Cleavage of structural proteins during assembly of the bacteriophage T4.Nature 227, 680–5.

    Google Scholar 

  • Lawrence, M. B. &Springer, T. A. (1991) Leukocytes roll on a selectin at physiologic flow rates. Distinction from and prerequisite for adhesion through integrins.Cell 65, 859–73.

    Google Scholar 

  • Leary, J. J., Brigati, D. J. &Ward, D. C. (1983) Rapid and sensitive colorimetric method for visualizing biotin-labeled DNA probes hybridized to DNA or RNA immobilized on nitrocellulose: bio-plots.Proc. Natl Acad. Sci. USA 80, 4045–9.

    Google Scholar 

  • Lehmann, S., Kuchler, S., Theveniau, M., Vincendon, G. &Zanetta, J.-P. (1990) An endogenous lectin and one of its neuronal glycoprotein ligands are involved in contact guidance of neuron migration.Proc. Natl Acad. Sci. USA 87, 6455–9.

    Google Scholar 

  • Lehmann, S., Kuchler, S., Badache, A., Zaepfel, M., Meyer, A. &Zanetta, J.-P. (1991) Involvement of the endogenous lectin CSL in adhesion of Chinese hamster ovary cells.Eur. J. Cell Biol. 56, 433–42.

    Google Scholar 

  • Lehmann, S., Kuchler, S., Gobaille, S., Marschal, P., Badache, A., Reeber, A., Vincendon, G. & Zanetta, J.-P. (1991b) Lesion-induced reexpression of neonatal recognition molecules in adult rat cerebellum.Brain Res. Bull. (in press).

  • Lowry, O. H., Rosebrough, N. J., Farr, A. L. &Randall, R. J. (1951) Protein measurement with Folin phenol reagent.J. Biol. Chem. 193, 265–75.

    Google Scholar 

  • Lozzio, B. B., Lozzio, C. B., Bamberger, E. G. &Feliu, A. S. (1981) A multipotential leukemia cell line (K-562) of human origin (41106)Proc. Soc. Exptl Biol. Med. 166, 546–50.

    Google Scholar 

  • Marlin, S. D. &Springer, T. A. (1987) Purified intercellular adhesion molecule-1 (ICAM-1) is a ligand for lymphocyte function-associated antigen 1 (LFA-1).Cell 51, 813–9.

    Google Scholar 

  • Marschal, P., Reeber, A., Neeser, J.-R., Vincendon, G. &Zanetta, J.-P. (1989) Carbohydrate and glycoprotein specificity of two endogenous cerebellar lectins.Biochimie 71, 645–53.

    Google Scholar 

  • Maschke, S., Rebel, G., Robert, J., Coindre, J.-M., Kuchler, S., Lehmann, S., Meyer, A., Zaepfel, M., Vincendon, G. & Zanetta, J.-P. (1992) Malignant cells have increased levels of common glycoprotein ligands of the endogenous cerebellar soluble lectin.Eur. J. Cell Biol. (submitted).

  • Mcgarry, R. C., Helfand, S. L., Quarles, R. H. &Roder, J. C. (1983) Recognition of myelin-associated glycoprotein by the monoclonal antibody HNK-1.Nature 306, 376–8.

    Google Scholar 

  • Miyatani, S., Shimamura, K., Hatta, M., Nagafuchi, A., Nose, A., Matsunaga, M., Hatta, K. &Takeichi, M. (1989) Neural cadherin-role in selective cell-cell adhesion.Science 245, 631–5.

    Google Scholar 

  • Moutsatsos, I. K., Davis, J. M. &Wang, J. L. (1986) Endogenous lectins from cultured cells: subcellular localization of carbohydrate binding protein 35 in 3T3 fibroblasts.J. Cell Biol. 102, 477–83.

    Google Scholar 

  • Musset, F., Frobert, Y., Grassi, J., Vigny, M., Boulla, G., Bon, S. &Massoulie, J. (1987) Monoclonal antibodies against acetylcholinesterase from electric organs ofElectrophorus andTorpedo.Biochimie 69, 147–56.

    Google Scholar 

  • Nagafuchi, A. &Takeichi, M. (1989) Transmembrane control of cadherin-mediated cell adhesion. A 94 kDa protein functionally associated with a specific region of the cytoplasmic domain of E-cadherin.Cell Regul. 1, 37–44.

    Google Scholar 

  • Nose, A., Tsuji, K. &Takeichi, M. (1990) Localization of specificity determining sites in cadherin cell adhesion molecules.Cell 61, 147–55.

    Google Scholar 

  • Ogle, R. C., Potts, A. J., Yacoe, M. &Little, C. D. (1989) Embryonic chicken fibroblast collagen binding proteins-distribution role in substratum adhesion and relationship to integrins.J. Cell Sci. 94 361–9.

    Google Scholar 

  • O'Shannessy, D. J., Willison, H. J., Inuzuka, T. &Quarles, R. H. (1985) The species distribution of nervous system antigens that react with anti myelin associated glycoprotein antibodies.J. Neuroimmunol. 9, 255–68.

    Google Scholar 

  • Perraud, F., Kuchler, S., Gobaille, S., Labourdette, G., Vincendon, G. &Zanetta, J.-P. (1988) Endogenous lectin CSL is present on the membrane of cilia of rat brain ependymal cells.J. Neurocytol. 17, 745–52.

    Google Scholar 

  • Pierres, M., Barbet, J., Naquet, P., Pont, S., Regnier-Vigouroux, A., Barad, M., Devaux, C., Marchetto, S. &Rougon, G. (1987) Thy-1, Thy-3 and thymocyte-activating molecule (ThAM): signal transduction T cell markers identified by rat monoclonal antibodies raised against phosphatidyl inositol-specific phospholipase C-solubilized thymocyte surface antigen. InThe T Cell Receptor. UCLA Symposia on Molecular and Cellular Biology, New Series, Vol. 73, pp. 293–300. New York: A. R. Liss Inc.

    Google Scholar 

  • Phillips, M. L., Nudelman, E., Gaeta, F. C. A., Perez, M., Singhal, A. K., Hakomori, S. I. &Paulson, J. C. (1990) ELAM-1 mediates cell adhesion by recognition of a carbohydrate ligand, sialyl-Lex.Science 250, 1130–2.

    Google Scholar 

  • Pytela, R. (1988) Amino acid sequence of the murine MAC-1 α chain reveals homology with the integrin family and an additional domain related to von Willebrand factor.EMBO J. 7, 1371–8.

    Google Scholar 

  • Ranscht, B. &Dourszimmermann, M. T. (1991) T-Cadherin a novel cadherin cell adhesion molecule in the nervous system lacks the conserved cytoplasmic region.Neuron 7, 391–402.

    Google Scholar 

  • Reeber, A., Vincendon, G. &Zanetta, J.-P. (1981) Isolation and immunohistochemical localization of a Purkinje cell specific glycoprotein subunit from rat cerebellum.Brain Res. 229, 53–65.

    Google Scholar 

  • Rosen, S. D. (1990) The LEC-CAMs. An emerging family of cell-cell adhesion receptors based upon carbohydrate recognition.Amer. J. Respir. Cell. Molec. Biol. 3, 397–402.

    Google Scholar 

  • Rosen, S. D., Geoffroy, J. S., Lasky, L. A., Singer, M. S., Stachel, S., Stoolman, L. M., True, D. D. &Yednock, T. A. (1990) A lymphocyte homing receptor is a lectin a member of the emerging LEC-CAM family.Glycobiology 111, 69–90.

    Google Scholar 

  • Ruoslahti, E., &Pierschbacher, M. D. (1987) New perspectives in cell adhesion: RGD and integrinsScience 238, 491–7.

    Google Scholar 

  • Rutishauser, U. (1989) N-cadherin. A cell adhesion molecule in neural development.Trends Neurosci. 12, 275–6.

    Google Scholar 

  • Rutishauser, U., Acheson, A., Hall, A. K., Mann, D. M. &Sunshine, J. (1988). The neural cell adhesion molecule (N-CAM) as a regulator of cell cell interactions.Science 2, 53–7.

    Google Scholar 

  • Schachner, M. (1989) Families of neural adhesion molecules.Carbohydrate Recognition in Cellular Function Chichester: John Wiley & Sons, pp. 156–72.

    Google Scholar 

  • Schuch, U., Lohse, M. J. &Schachner, M. (1989) Neural cell adhesion molecules influence 2nd messenger systems.Neuron 3, 13–20.

    Google Scholar 

  • Sharon, N. &Lis, H. (1989) Lectins as cell recognition molecules.Science 246, 227–34.

    Google Scholar 

  • Sharon, N. &Lis, H. (1990) Legume lectins. A large family of homologous proteins.FASEB J. 4, 3198–208.

    Google Scholar 

  • Shiozaki, H., Tahara, H., Oka, H., Miyata, M., Kobayashi, K., Tamura, S., Lihara, K., Doki, Y., Hirano, S., Takeichi, M., &Mori, T. (1991) Expression of immunoreactive E-cadherin adhesion molecules in human cancers.Am. J. Pathol. 139, 17–23.

    Google Scholar 

  • Springer, T. A. (1990). Adhesion receptors of the immune system.Nature 346, 425–34.

    Google Scholar 

  • Stacker, S. A. &Springer, T. A. (1991) Leukocyte integrin P150,95 (CD11c/CD18) functions as an adhesion molecule binding to a counter-receptor on stimulated endothelium.J. Immunol. 146, 648–55.

    Google Scholar 

  • Takeichi, M. (1990) Cadherins. A molecular family important in selective cell-cell adhesion.Ann. Rev. Biochem. 59, 237–52.

    Google Scholar 

  • Takeichi, M. (1991) Cadherin cell adhesion receptors as a morphogenetic regulator.Science 251, 1451–5.

    Google Scholar 

  • Towbin, H., Staehelin, T. &Gordon, J. (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applicationsProc. Natl Acad. Sci. USA 76, 4350–4.

    Google Scholar 

  • Waiz, G., Aruffo, A., Kolanus, W., Bevilacqua, M., &Seed, B. (1990) Recognition by ELAM-1 of the sialyl-Lex determinant on myeloid and tumor cells.Science 250, 1132–5.

    Google Scholar 

  • Zanetta, J.-P., Dontenwill, M., Meyer, A. &Roussel, G. (1985a) Isolation and immunohistochemical localization of a lectin like molecule from the rat cerebellum.Dev. Brain Res. 17, 233–43.

    Google Scholar 

  • Zanetta, J.-P., Dontenwill, M., Reeber, A., Vincendon, G., Legrand, C., Clos, J. &Legrand, J. (1985b) ConA binding glycoproteins in the developing cerebellum of control and hypothyroid rats.Dev. Brain Res. 21, 1–6.

    Google Scholar 

  • Zanetta, J.-P., Bingen, A., Dontenwill-Kieffer, M., Reeber, A., Meyer, A. &Vincendon, G. (1987a) Cerebellar lectin R1 is related to the receptor of circulating mannosyl glycoproteins of liver sinusoidal cells.Cell Molec. Biol. 33, 423–34.

    Google Scholar 

  • Zanetta, J.-P., Dontenwill, M., Reeber, A. &Vincendon, G. (1987b) Expression of recognition molecules in the cerebellum of young and adult rats.NATO ASI Series H 2, 92–104.

    Google Scholar 

  • Zanetta, J.-P., Meyer, A., Kuchler, S. &Vincendon, G. (1987c) Isolation and immunochemical study of a soluble cerebellar lectin delineating its structure and function.J. Neurochem. 49, 1250–7.

    Google Scholar 

  • Zanetta, J.-P., Kuchler, S., Marschal, P., Zaepfel, M., Meyer, A., Badache, A., Reeber, A., Lehmann, S. &Vincendon, G. (1990a) Role of an endogenous mannosyl-lectin in myelination and stabilization of myelin structure.NATO ASI Series H 43, 433–50.

    Google Scholar 

  • Zanetta, J.-P., Warter, J.-M., Kuchler, S., Marschal, P., Rumbach, L., Lehmann, S., Tranchant, C., Reeber, A. &Vincendon, G. (1990b) Antibodies to cerebellar soluble lectin CSL in multiple sclerosis.Lancet 335, 1482–4.

    Google Scholar 

  • Zanetta, J.-P., Warter, J.-M., Lehmann, S., Tranchant, C., Kuchler, S. &Vincendon, G. (1990c) Presence of antibodies to lectin CSL in the blood of multiple sclerosis patients.C. R. Acad. Sci. Paris, Série III 311, 327–31.

    Google Scholar 

  • Zanetta, J.-P., Kuchler, S., Lehmann, S., Badache, A., Maschke, S., Marschal, P., Dufourcq, P. &Vincendon, G. (1991a) Cerebellar lectins.Int. Rev. Cytol. 135, 129–54.

    Google Scholar 

  • Zanetta, J.-P., Kuchler, S., Lehmann, S., Marschal, P., Zaepfel, M., Meyer, A., Badache, A., Reeber, A. &Vincendon, G. (1991b) Endogenous mannose-binding lectins in brain development and function. InLectin and Cancer (edited byGabius, H.-J. &Gabius, S.) pp. 305–19. Berlin: Springer Verlag.

    Google Scholar 

  • Zanetta, J.-P., Staedel, C., Kuchler, S., Zaepfel, M., Meyer, A. &Vincendon, G. (1991c) Malignant transformation in hepatocytes is associated with the general increase of glycoprotein ligands specifically binding to the endogenous lectin CSL.Carbohydr. Res. 213, 117–26.

    Google Scholar 

  • Zanetta, J.-P., Kuchler, S., Lehmann, S., Meyer, A., Zaepfel, M. & Warter, J.-M. (1992) A major immunological target in multiple sclerosis.J. Neuroimmunol. (submitted).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zanetta, JP., Kuchler, S., Lehmann, S. et al. Glycoproteins and lectins in cell adhesion and cell recognition processes. Histochem J 24, 791–804 (1992). https://doi.org/10.1007/BF01046351

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01046351

Keywords

Navigation