Skip to main content
Log in

Solid-state and inclusion properties of hydrogen-bonded 1,3-cyclohexanedione cyclamers

  • Published:
Journal of inclusion phenomena and molecular recognition in chemistry Aims and scope Submit manuscript

Abstract

During crystallization 1,3-cyclohexanedione self assembles into either hydrogen-bonded chains or hexameric rings depending on the solvent conditions. The hexameric rings, called cyclamers, are the subject of this paper. These unusual structures occlude benzene as a guest molecule. The structural and crystal chemical properties of these host-guest compounds are explored here with the use of crystal growth studies, X-ray powder patterns, and thermal analysis. The crystal structure of the benzene cyclamer of 5-methyl-1,3-cyclohexanedione is reported (hexagonal,a =b = 19.19(2)Å,c = 10.545(9)Å,R3,Z = 18,V = 3362(6)Å3; 717 unique reflections,R = 0.062). An analysis of the stereochemical implications of cyclic directionality in these cyclamers is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. C. Etter, Z. Urbañczyk-Lipkowska, D. A. Jahn, and J. S. Frye:J. Am. Chem. Soc. 108, 5871 (1986).

    Google Scholar 

  2. D. Y. Duchamp and R. E. Marsh:Acta Crystallogr. B25, 5 (1969).

    Google Scholar 

  3. W. A. Denne and R. W. H. Small:Acta Crystallogr. B27, 1094 (1971).

    Google Scholar 

  4. T. P. Lockhart:Organometallics 7, 1438 (1988).

    Google Scholar 

  5. M. C. Etter, Z. Urbañczyk-Lipkowska, T. Ameli, and T. W. Panunto:J. Cryst. Spectrosc. Res. 18, 491 (1988);

    Google Scholar 

  6. M. C. Etter and T. W. Panunto:J. Am. Chem. Soc. 110, 5896 (1988);

    Google Scholar 

  7. M. C. Etter and G. M. Frankenbach:Chem. Materials 1, 10 (1989);

    Google Scholar 

  8. T. W. Panunto, Z. Urbañczyk-Lipkowska, R. Johnson, and M. C. Etter:J. Am. Chem. Soc. 109, 7786 (1987).

    Google Scholar 

  9. D. Semmingsen:Acta Chem. Scand. B28, 169 (1974);

    Google Scholar 

  10. I. Singh and C. Calvo:Can. J. Chem. 53, 1046 (1975).

    Google Scholar 

  11. A. K. Musser and P. L. Fuchs:J. Org. Chem. 47, 3121 (1982);

    Google Scholar 

  12. J. P. Blanchard and H. L. Goering: J. Am. Chem. Soc.73, 5863 (1951).

    Google Scholar 

  13. B. A. Frenz, Enraf-Nonius Structure Determination Package, 4th Ed. B. A. Frenz Associates: College Station, TX 1982.

    Google Scholar 

  14. International Tables for X-ray Crystallography, Vol. 3 (Kynoch Press, Birmingham, 1962, Distr. Kluwer Academic Publishers).

  15. Spectrum was run by the Colorado State University Regional NMR Center.

  16. The rate constant for the loss of benzene was calculated according to several equations derived from different mechanisms for solid state reactions (S. R. Byrn:The Solid-State Chemistry of Drugs, Academic Press (1982)). An Arrhenius plot of ln(k) (using k from the Prout-Tompkins equation, which gave the best fit) vs 1/T gave the energy of activation. The correlation coefficients for the rate equations were approximately 0.90, reflecting the difficulties inherent in quantifying reactions in the solid state.

  17. F. H. Allen, O. Kennard, D. G. Watson, L. Brammer, A. G. Orpen, and R. Taylor:J. Chem. Soc., Perkin Trans. 2, S1 (1987).

    Google Scholar 

  18. A. R. Ubbelhode and K. S. Gallagher:Acta Crystallogr. 8, 71 (1955);

    Google Scholar 

  19. D. Hadzi:Pure Appl. Chem. 11, 435 (1965);

    Google Scholar 

  20. J. Emsley:Chem. Soc. Rev. 9, 91 (1980).

    Google Scholar 

  21. G. Bruni and G. Natta:Recl. Trav. Chim. 48, 860 (1929).

    Google Scholar 

  22. M. D. Singh, J. Siegel, S. E. Biali, and K. Mislow:J. Am. Chem. Soc. 109, 3397 (1987).

    Google Scholar 

  23. At first glance, it appears that C(5) in III cannot be stereogenic since it has two attached identical groups (hydrogens). Upon further consideration, however, it is recognized that the axial and equatorial hydrogens are chemically different in the solid state where conformational interconversions are not taking place.

  24. Concerted proton hopping similar to the mechanism proposed here has been observed for porphyrins in photochemical hole burning experiments (S. Volker and J. H. van der Waals:Mol. Phys. 32, 1703 (1976)).

    Google Scholar 

  25. The enol and keto oxygens occupy diastereomeric positions in the cyclamers, so proton hopping is not a degenerate process, as it would be inA andB.

  26. J. L. Atwood, J. E. D. Davies and D. D. MacNicol (eds):Inclusion Compounds, v. 1–3, Academic Press (1984).

  27. V. M. Bhatnagar,Clathrate Compounds, Chemical Publishing Co., New York, 1970.

    Google Scholar 

  28. Coupling of pi-electrons with hydrogen bonds has been termed resonance assisted hydrogen bonding (G. Gilli, F. Bellucci, V. Ferretti, and V. Bertolasi:J. Am. Chem. Soc. 111, 1023 (1989)).

    Google Scholar 

  29. J. H. Ok, R. R. Vold, R. L. Vold, and M. C. Etter:J. Phys. Chem. 93, 7618 (1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Alfred P. Sloan Foundation Fellow, 1989–1991.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Etter, M.C., Parker, D.L., Ruberu, S.R. et al. Solid-state and inclusion properties of hydrogen-bonded 1,3-cyclohexanedione cyclamers. J Incl Phenom Macrocycl Chem 8, 395–407 (1990). https://doi.org/10.1007/BF01041196

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01041196

Key words

Navigation