Skip to main content
Log in

Mutational equations in metric spaces

  • Published:
Set-Valued Analysis Aims and scope Submit manuscript

Abstract

This paper summarizes an extension of differential calculus to a mutational calculus for maps from one metric space to another. The simple idea is to replace half-lines allowing to define difference quotients of maps and their various limits in the case of vector space by ‘transitions’ with which we can also define differential quotients of a map. Their various limits are called ‘mutations’ of a map. Many results of differential calculus and set-valued analysis, including the Inverse Function Theorem, do not really rely on the linear structure and can be adapted to the nonlinear case of metric spaces and exploited. Furthermore, the concept of differential equation can be extended tomutational equation governing the evolution in metric spaces. Basic Theorems as the Nagumo Theorem, the Cauchy-Lipschitz Theorem, the Center Manifold Theorem and the second Lyapunov Method hold true for mutational equations.

This work was motivated by evolution equations of ‘tubes’ in ‘visual servoing’ on one hand, mathematical morphology on the other, when the metric spaces are ‘power spaces’. This paper begins by listing some consequences of general theorems concerning ‘mutational equations for tubes’.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Amari, S.I., Feature spaces which admit and detect invariant signal transformations,Proc. 4th Int. J. Conf. Pattern Recognition, 1978.

  2. Amari, S.I. and Maruyama, M., A theory on the determination of 3D motion and 3D structure from features,Spatial Vision 2 (1987), 151–168.

    Google Scholar 

  3. Aubin, J.-P., Contingent derivatives of set-valued maps and existence of solutions to nonlinear inclusions and differential inclusions, in L. Nachbin (ed),Advances in Mathematics, Supplementary Studies, 1981, 160–232.

  4. Aubin, J.-P., Comportement lipschitzien des solutions de problèmes de minimisation convexes,C.R. Acad. Sci., Paris 295, (1982), 235–238.

    Google Scholar 

  5. Aubin, J.-P.,Viability Theory, Birkhäuser, Boston, Basel, Berlin, 1991.

    Google Scholar 

  6. Aubin, J.-P., A note on differential calculus in metric spaces and its applications to the evolution of tubes,Bull. Polish Acad. Sci. 40 (1992), 151–162.

    Google Scholar 

  7. Aubin, J.-P. and Da Prato, G., Solutions contingentes de l'équation de la variété centrale,C.R. Acad. Sci. Paris 311 (1990), 295–300.

    Google Scholar 

  8. Aubin, J.-P. and Da Prato, G., Contingent solutions to the center manifold equation,Ann. Inst. H. Poincaré, Anal. Non Linéaire 9 (1992), 13–28.

    Google Scholar 

  9. Aubin, J.-P. and Ekeland, I.,Applied Nonlinear Analysis, Wiley-Interscience, New York, 1990.

    Google Scholar 

  10. Aubin, J.-P. and Frankowska, H.,Set-Valued Analysis, Birkhäuser, Boston, Basel, Berlin, 1990.

    Google Scholar 

  11. Aubin, J.-P. and Frankowska, H., Inclusions aux dérivées partielles gouvernant des contrôles de rétroaction,C.R. Acad. Sci. Paris 311 (1990), 851–856.

    Google Scholar 

  12. Aubin, J.-P. and Frankowska, H., Systèmes hyperboliques d'inclusions aux dérivées partielles,C.R. Acad. Sci. Paris 312 (1991), 271–276.

    Google Scholar 

  13. Aubin, J.-P. and Frankowska, H., Hyperbolic systems of partial differential inclusions,Ann. Scuola Norm. Pisa 18 (1992), 541–562.

    Google Scholar 

  14. Banks, H.T. and Jacobs, M.Q., A differential calculus for multifunctions,J. Math. Anal. Appl. 29 (1970), 246–272.

    Google Scholar 

  15. De Blasi, F.S., On differentiability of multifunctions,Pac. J. Math. 66 (1976), 67–81.

    Google Scholar 

  16. Céa, J.,Une méthode numérique pour la recherche d'un domaine optimal Publication IMAN, Université de Nice, 1978.

  17. Clarke, F.H., Generalized gradients and applications,Trans. Am. Math. Soc. 205 (1975), 247–262.

    Google Scholar 

  18. Clarke, F.H.,Optimization and Nonsmooth Analysis, Wiley-Interscience, New York, 1983.

    Google Scholar 

  19. Delfour, M.C. and Zolesio, J-P., Shape sensitivity analysis via a penalization method,Ann. Mat. Pura Appli. (4)61 (1988), 179–212.

    Google Scholar 

  20. Delfour, M.C. and Zolesio, J-P., Shape sensitivy analysis via min max differentiability,SIAM J. Control and Optim. 26(4) (1988), 834–862.

    Google Scholar 

  21. Delfour, M. and Zolesio, J.-P., Analyse des problèmes de forme par la dérivation des minimax, in Aubin, Clarke, Ekeland (Eds),Analyse Non Linéaire, Attouch, Gauthier-Villars & C.R.M. Université de Montréal (1989), pp. 211–228.

  22. Delfour, M. and Zolesio, J.-P., Structure of shape derivatives for domains nonsmooth domains,J. Funct. Anal. (to appear).

  23. Doyen, L., Shape Lyapunov functions and visual servoing (to appear).

  24. Doyen, L., Inverse function theorems and shape optimization,J. Control Optim. (to appear).

  25. Doyen, L., Multiplicateurs de Lagrange pour des problèmes d'optimisation de formes et théorème des fonctions inverses (to appear).

  26. Doyen, L., Lagrangian multipliers in shape optimization under shape constraints,Proc. IFIP Workshop Boundary Control, Centre de Mathématiques Appliquéesm École des Mines, Sophia-Antipolis (to appear).

  27. Doyen, L., Mutational equations for tubes and vision based control (to appear).

  28. Doyen, L., Filippov and invariance theorems for mutational inclusions for tubes (to appear).

  29. Fortune, G. and Gautier, S., Equations différentielles dont la variable d'état est un convexe, preprint.

  30. Frankowska, H., Inclusions adjointes associées aux trajectoires minimales d'inclusions différentielles,C.R. Acad. Sci. Paris, Série 1 297 (1983), 461–464.

    Google Scholar 

  31. Frankowska, H., The maximum principle for a differential inclusion problem, inAnalysis and Optimization of Systems, Proc. 6th Internat. Conf. Analysis and Optimization of Systems, Lecture Notes in Control and Information Sciences, Springer-Verlag, New York, 1984, pp. 517–532.

    Google Scholar 

  32. Frankowska, H., Local controllability and infinitesimal generators of semigroups of set-valued maps,SIAM J. Control Optim. 25 (1987), 412–432.

    Google Scholar 

  33. Frankowska, H., A priori estimates for operational differential inclusions,Differential Equations (1990).

  34. Frankowska, H., Some inverse mapping theorems,Ann. Inst. H. Poincaré, Anal. Non Linéaire 3 (1990), 183–234.

    Google Scholar 

  35. Frankowska, H.,Control of Nonlinear Systems and Differential Inclusions, Birkhäuser, New York, Basel, 1992.

    Google Scholar 

  36. Frankowska, H., Plaskacz, S., and Rzezuchowski, T. (to appear).

  37. Kurzhanski, A.B. and Filippova, T. F., On the description of the set of viable trajctories of a differential inclusion,Dokl. Akad. Nauk. SSSR 289 (1986), 38–41.

    Google Scholar 

  38. Kurzhanski, A.B. and Filippova, T.F., On the description of the set of viable trajctories of a differential inclusion,Soviet Math. Dokl. 34(1) (1987), 30–33.

    Google Scholar 

  39. Kurzhanski, A.B. and Filippova, T.F., On the set-valued calculus in problems of viability and control for dynamic processes: the evolution equation, in Attouch, Aubin, Clarke, Ekeland (eds),Analyse Non Linéaire, Gauthier-Villars & C.R.M. Université de Montréal, 1989, pp. 339–364.

  40. Kurzhanski, A.B. and Nikonov, O.I., Funnel equations and multivalued integration problems for control synthesis,Dokl. Soviet Math. 311 (1990), 788–793.

    Google Scholar 

  41. Kurzhanski, A.B. and Valyi, I., Set-valued solutions to control problems and their approximations, in A. Bensoussan and J.-L. Lions (eds),Analysis and Optimization of Systems, Vol. 111, Springer-Verlag, New York, 1988, pp. 775–785.

    Google Scholar 

  42. Kurzhanski, A.B. and Valyi, I.,Ellipsoidal-valued dynamics for estimation and control (to appear).

  43. Martelli, M. V and Vignoli, A., On differentiability of multivalued maps,Boll. Un. Mat. Stat. 10 (1974), 701–712.

    Google Scholar 

  44. Matheron, G.,Random Sets and Integral Geometry, Wiley, New York, 1975.

    Google Scholar 

  45. Mattioli, J. and Schmitt, M.,Mathematical Morphology, MATARI COMETT lecture notes, 1992.

  46. Mattioli, J. and Schmitt, M., Inverse problems for granulometries by erosion,J. Mathematical Imaging and Vision 2 (1992), 217–232.

    Google Scholar 

  47. Mattioli, J. and Schmitt, M.,Eléments de morphologie mathématique, Masson, Paris, 1993.

    Google Scholar 

  48. Mattioli, J., Relations différentielles d'opérations de la morphologie mathématique,Revue Technique Thomson, 1993.

  49. Mattioli, J., Differential relations of morphological operators, inMathematical Morphology and its Applications to Signal Processing, Barcelona, Spain, 12–14 May 1993.

  50. Mattioli, J., Differential inclusions for mathematical morphology, inSPIE: Application of Artificial Neural Network, San Diego, 11–16 July 1993.

  51. Nagumo, M., Über die lage der integralkurven gewöhnlicher differentialgleichungen,Proc. Phys. Math. Soc. Japan 24 (1942), 551–559.

    Google Scholar 

  52. Panasyuk, A.I. and Panasyuk, V.I., An equation generated by a differential inclusion,Mathe matical Notes 27(3) (1980), 213–218.

    Google Scholar 

  53. Panasyuk, A.I., Quasidifferential equation in a metric space,Differential Equations 21 (1985), 914–921.

    Google Scholar 

  54. Panasyuk, A.I., Dynamics of sets defined by differential inclusions,Siberian Math. J. 27(5) (1986), 757–765.

    Google Scholar 

  55. Panasyuk, A.I., Dynamics of attainable sets of control systems,Differential Equations 24(12) (1988).

  56. Panasyuk, A.I., On the integral funnel equations and its applications,Differential Equations 24(11) (1988), 1288–1294.

    Google Scholar 

  57. Panasyuk, A.I., Qualitative dynamics of sets defined by differential inclusions,Mathematical Notes 45 (1989).

  58. Panasyuk, A.I., Equations of attainable set dynamics, Part 1: Integral funnel equations,J. Optim. Theory Appl. 64(2) (1990), 349–366.

    Google Scholar 

  59. Panasyuk, A.I., Equations of attainable set dynamics, Part 2: Partial differential equations,J. Optim. Theory Appl. 64(2) (1990), 367–377.

    Google Scholar 

  60. Petcherskaja, N.A., On differentiability of set-valued maps (in Russian),Vestnik Leningrad Univ. (1980), 115–117.

  61. Rockafellar, R.T., Lipschitzian properties of multifunctions,J. Nonlinear Anal. T.M.A. 9 (1985), 867–885.

    Google Scholar 

  62. Rockafellar, R.T., Pseudo-differentiability of set-valued mappings and its applications in optimization, preprint, 1987.

  63. Rockafellar, R.T., Proto-Differentiability of set-valued mappings and its applications in optimization, in Attouch, Aubin, Clarke, Ekeland (eds),Analyse Non Linéaire, Gauthier-Villars & C.R.M. Université de Montréal, 1989, pp. 449–482.

  64. Rockafellar, R.T., Extensions of subgradient calculus with applications to optimization (to appear).

  65. Rockafellar, R.T. and Wets, R., Cosmic convergence (to appear).

  66. Rockafellar, R.T. and Wets, R., Monograph (to appear).

  67. Schmitt, M. and Vincent, L.,Morphological Image Analysis. Practical and Algorithmic Handbook, Cambridge University Press, 1993.

  68. Tolstonogov, A.A.,Differential Inclusions in Banach Spaces, Nauka, Moscow (in Russian), 1986.

    Google Scholar 

  69. Veliov, V.M., (in preparation).

  70. Ważewski, T., Sur l'évaluation du domaine d'existence des fonctions implicites réelles ou complexes,Ann. Soc. Pol. Math. 20 (1947), 81–120.

    Google Scholar 

  71. Ważewski, T., Sur l'évaluation du domaine d'existence des fonctions implicites dans le cas des espaces abstraits,Fund. Mat. 37 (1951), 5–24.

    Google Scholar 

  72. Zolezio, J.-P., Identification de domaines par déformations, Thèse de Doctorat d'État, Université de Nice, 1979.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aubin, JP. Mutational equations in metric spaces. Set-Valued Anal 1, 3–46 (1993). https://doi.org/10.1007/BF01039289

Download citation

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01039289

Mathematics Subject Classifications (1991)

Key words

Navigation