Skip to main content
Log in

Arguments against a spur model for muonium formation

  • Muonium Formation and Muonium Chemistry
  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

The postulated spur model is scrutinized by reference to μ SR and MSR data in a variety of media. Specific arguments are given against the spur model when applied to: water and aqueous solutions of electrom scavengers; low dielectric media such as hydrocarbons and liquid argon-and particularly the contrast between the muonium yield and the radiolysis free-ion yield; CCl4 and its mixtures with hydrocarbons; and the absence of an effect of an external electric field. Comments are made regarding the timescale of muonium formation and on important comparisons with positronium formation. It is suggested that an “expanding track” model may account for the missing polarization which is observed in liquids but not in solids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. W. Percival, E. Roduner and H. Fischer, in “Positronium and Muonium Chemistry” Editor H. J. Ache, Adv. Chem. Series175, (1979) 335.

  2. P. W. Percival, E. Roduner and H. Fischer, Chem. Phys.32 (1978) 353.

    Google Scholar 

  3. O. E. Mögensen, J. Chem. Phys.60, (1974) 998.

    Google Scholar 

  4. J. L. Magee and A. Chatterjee, Radiat. Phys. Chem.15, (1980) 125.

    Google Scholar 

  5. J. H. Brewer, K. M. Crowe, F. N. Gygax and A. Schenck, in “Muon Physics”, edited by V. W. Hughes and C. S. Wu, Academic Press, New York 1975, p. 3. See for example: (a) G. Duplatre, A. G. Maddock, J. Ch. Abbe and A.

    Google Scholar 

  6. Haessler, Chem. Phys.28, (1978) 433;

    Google Scholar 

  7. G. Wikander, Chem. Phys.38, (1979) 181.

    Google Scholar 

  8. A. Mozumder, in “Advances in Radiation Chemistry, Vol. 1” edited by M. Burton and J. L. Magee, Wiley, New York 1969, p. 1.

    Google Scholar 

  9. M. Anbar, M. Bambenek and A. B. Ross, NSRDS-NBS 43 (1973).

  10. D. C. Walker, Y. C. Jean and D. G. Fleming, J. Chem. Phys.72, (1980) 2902.

    Google Scholar 

  11. D. C. Walker, Y. C. Jean and D. G. Fleming, J. Chem. Phys.70, (1979) 4534.

    Google Scholar 

  12. Y. Ito, B. W. Ng, Y. C. Jean and D. C. Walker (in press).

  13. R. F. Kiefl, J. B. Warren, G. M. Marshall, C. J. Oram and C. W. Clawson (submitted for publication).

  14. A. O. Allen, NSRDS-NBS 57 (1976).

  15. A. O. Allen, NSRDS-NBS 58 (1976).

  16. O. E. Mögensen, Appl. Phys.6, (1975) 315.

    Google Scholar 

  17. Y. Ito, B. W. Ng, Y. C. Jean and D. C. Walker, later paper in this volume.

  18. D. G. Fleming, D. M. Garner, L. C. Vaz, D. C. Walker, J. H. Brewer and K. M. Crowe, in “Positronium and Muonium Chemistry” edited by H. J. Ache, Adv. Chem. Series175, (1979) 279.

  19. B. W. Ng, Y. C. Jean, Y. Ito and D. C. Walker (to be published).

  20. P. W. Percival, J. Chem. Phys.72, (1980) 2901.

    Google Scholar 

  21. P. W. Percival, Radiochimica Acta26, (1979) 1.

    Google Scholar 

  22. Y. C. Jean, J. H. Brewer, D. G. Fleming and D. C. Walker, Chem. Phys. Lett.,50, (1978) 125.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Walker, D.C. Arguments against a spur model for muonium formation. Hyperfine Interact 8, 329–335 (1981). https://doi.org/10.1007/BF01037489

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01037489

Keywords

Navigation