Skip to main content
Log in

Hybrid organic-inorganic materials synthesized by reaction with alkoxysilanes: Effect of the acid-to-alkoxide ratio on morphology

  • Published:
Journal of Inorganic and Organometallic Polymers Aims and scope Submit manuscript

Abstract

The gelation phenomenon of hybrid organic-inorganic materials is investigated as a function of the temperature and the catalyst-to-alkoxide ratio. These ceramers are prepared in a two-step synthesis: First, an α-hydroxy, ω-methyl poly(ethylene oxide) and an α-hydroxy-terminated hydrogenated polybutadiene (H-PBD) are reacted with isophorone diisocyanate (IPDI); second, these isocyanate-terminated prepolymers are reacted with γ-aminopropyltriethoxysilane (γ-APS) to form alkoxysilane-terminated macromonomers. These macromonomers are cross-linked using the well-known sol-gel process. The gelation time is found to be sensitive to the acid-to-alkoxide ratio. The large difference in the activation energies of the gelation process of the two kinds of macromonomers could be attributed to the amount of the IPDI/γ-APS copolymers. This results in an incomplete reaction of IPDI during the first stages of synthesis: The final morphology of the cured hybrid materials, based on the H-PBD macromonomer, depends on the amount of H+ and indicates that the acid-to-alkoxide ratio modifies not only the rate of hydrolysis of the alkoxide, but also the structure of the ceramer. The model of the microstructure of such hybrid materials, described previously, could explain the two relaxation peaks observed by dynamic mechanical spectroscopy. The relaxation close to the glass transition temperature of the initial H-PBD is attributed to the glass transition region of the organic-rich matrix. The second peak, 50°C above, is associated with the glass transition temperature of the interface between the organic-rich region and the inorganic clusters (H+/Si, >0.05). The second relaxation is easily observed at a low H+/Si ratio (<10−3).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. E. Yoldas,J. Mater. Sci. 14, 1843 (1979).

    Google Scholar 

  2. M. Yamane, S. Aso, S. Okano, and T. Sakaino,J. Mater. Sci. 14, 607 (1979).

    Google Scholar 

  3. J. D. McKenzie,J. Non-Crystal. Solids 48, 1 (1982).

    Google Scholar 

  4. C. J. Brinker and G. W. Scherer,J. Non-Crystal. Solids 70, 301 (1985).

    Google Scholar 

  5. W. Beier, A. A. Gotkas, and G. H. Frischat,J. Am. Ceram. Soc. 69, C-148 (1986).

    Google Scholar 

  6. R. Aelion, A. Loebel, and F. Eirich,Am. Chem. Soc. J. 72, 124 (1950).

    Google Scholar 

  7. Y. Paoting, L. Hsiaoming, and W. Yuguang,J. Non-Crystal. Solids 52, 511 (1982).

    Google Scholar 

  8. C. J. Brinker and G. W. Scherer,J. Non-Crystal. Solids 70, 301 (1985).

    Google Scholar 

  9. E. J. A. Pope and J. D. McKenzie,J. Non-Crystal. Solids 87, 185 (1986).

    Google Scholar 

  10. H. H. Huang, B. Orler, and G. L. Wilkes,Polym. Bull. 14, 557 (1985).

    Google Scholar 

  11. J. E. Mark and C. C. Sun,Polym. Bull. 18, 259 (1987).

    Google Scholar 

  12. K. A. Mauritz, C. K. Jones, and R. M. Warren,Polym. Mater. Sci. Eng. 58, 1079 (1988).

    Google Scholar 

  13. G. Philipp and H. Schmidt,J. Non-Crystal. Solids 63, 283 (1984).

    Google Scholar 

  14. G. Philipp and H. Schmidt,J. Non-Crystal. Solids 82, 31 (1986).

    Google Scholar 

  15. J. E. Mark, Y.-P. Ning, C. Y. Jiang, M. Y. Tang, and W. C. Roth,Polymer 26, 2069 (1985).

    Google Scholar 

  16. C. J. J. Landry, B. K. Coltrain, and B. K. Brady,Polymer 33(7), 1486 (1992).

    Google Scholar 

  17. L. Gainda, J. E. Mark, J. L. Ackerman, and C. Chang,Macromolecules 24, 4067 (1991).

    Google Scholar 

  18. K. A. Mauritz and C. K. Jones,J. Appl. Polym. Sci. 40, 1401 (1990).

    Google Scholar 

  19. T. Saegusa and Y. Chujo,Makromol. Chem. Makromol. Symp. 51, 1 (1991).

    Google Scholar 

  20. C. J. T. Landry, B. K. Coltrain, and B. K. Brady,Polymer 33, 1486 (1991).

    Google Scholar 

  21. H. H. Huang, B. Orler, and G. L. Wilkes,Macromolecules 20, 1322 (1987).

    Google Scholar 

  22. H. H. Huang, R. H. Glaser, and G. L. Wilkes, inInorganic and Organometallic Polymers, M. Zelin, K. J. Wynne, and H. R. Allcock, eds. (Am. Chem. Soc., Washington, DC, 1988), Chap. 9, p. 356.

    Google Scholar 

  23. P. Judeinstein, J. Livage, A. Zarudiansky, and R. Rose,Solid State Ionics 28–30, 1722 (1988).

    Google Scholar 

  24. H. H. Huang, G. L. Wilkes, and J. G. Carlson,Polymer 30, 2001 (1989).

    Google Scholar 

  25. F. Surivet, T. M. Lam, and J. P. Pascault,J. Polym. Sci. A Polym. Chem. 29, 1977 (1991).

    Google Scholar 

  26. F. Surivet, Ph. D. thesis (INSA, Lyon, France, 1992).

    Google Scholar 

  27. F. Surivet, T. M. Lam, J. P. Pascault, and Q. T. Pham,Macromolecules 25, 4309 (1992).

    Google Scholar 

  28. F. Surivet, T. M. Lam, J. P. Pascault, and C. Mai,Macromolecules 25, 5742 (1992).

    Google Scholar 

  29. D. Adolf, J. E. Martin, and J. P. Wilcoxon,Macromolecules 23, 527 (1990).

    Google Scholar 

  30. D. Adolf and J. E. Martin,Macromolecules 23, 3700 (1990).

    Google Scholar 

  31. D. Durand, M. Delsanti, M. Adam, and J. M. Luck,Europhys. Lett. 3, 297 (1987).

    Google Scholar 

  32. R. Muller, E. Gerard, P. Dugand, P. Rempp, and Y. Gnanou,Macromolecules 24, 1321 (1991).

    Google Scholar 

  33. D. F. Hodgson and E. J. Amis,Macromolecules 23, 2512 (1990).

    Google Scholar 

  34. H. H. Winter,Polym. Eng. Sci. 27, 1698 (1987).

    Google Scholar 

  35. R. H. Glaser and G. L. Wilkes,Am. Chem. Soc. Polym. Prepr. New-Orleans 28(2), 236 (1985).

    Google Scholar 

  36. F. Brunet, B. Cabane, M. Dubois, and B. Perly,J. Phys. Chem. 95, 945 (1991).

    Google Scholar 

  37. P. Pouxweil-Boillot, A. Dauger, and A. Wright,Mater. Res. Soc. Symp. Proc. 127, 121 (1988).

    Google Scholar 

  38. H. H. Huang and G. L. Wilkes,Polym. Bull. 18, 455 (1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaddami, H., Surivet, F., Gérard, J.F. et al. Hybrid organic-inorganic materials synthesized by reaction with alkoxysilanes: Effect of the acid-to-alkoxide ratio on morphology. J Inorg Organomet Polym 4, 183–198 (1994). https://doi.org/10.1007/BF01036542

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01036542

Key words

Navigation