Skip to main content
Log in

Potential distribution and electrode stability in a bipolar electrolysis cell

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

A computational model is presented, which enables the identification of those zones endangered by corrosion in a bipolar electrolysis cell stack. The method consists of two steps: first the potential profile in the electrolyser is computed by numerical solution of the Laplace equation using the finite difference method; then, making use of the Criss-Cobble correspondence principle, this profile is related to the potential-dependent thermodynamic stabilities of the respective metals. This may be a useful tool in the design of intermittently operating electrolysers (for example those powered by solar energy).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A :

metal phase

A i :

single A-phase point

B :

electrolyte phase

B i :

single B-phase point

F :

Faraday constant

h :

mesh interval (m)

i :

local current density (A m−2)

i 0 :

exchange current density (A m−2)

j :

local current across the double layer (A)

j iA,j iB :

tangential or normal component of the double layer current (A)

K :

A, B phase conductivity ratio

m :

molality mol kg−1

R :

gas constant

T :

absolute temperature (K)

U :

potential (V)

U 0 :

water decomposition voltage (V)

U tot :

end plate potential (V)

x, y :

cartesian coordinates

α:

overrelaxation factor

ηa, ηc :

anodic or cathodic overpotential (V)

κA, κB :

electrical conductivity (Ω−1 m−1)

Φ:

potential (V)

Φm :

local double layer potential, electrode end (V)

Φs :

local double layer potential, electrolyte end (V)

References

  1. M. Jaksic,Electrochim. Acta 29 (1984) 1539.

    Google Scholar 

  2. J. Divisek and J. Balej, to be published in DECHEMA-Monographien 1990.

  3. J. Divisek and H. Schmitz, ‘Galvanische Herstellung und elektrochemische Stabilität von aktiven Nickelelektroden’, DECHEMA-Monográphie, 1989, p. 299.

  4. L. Lapidus and G. F. Pinder, ‘Numerical Solution of Partial Differential Equations in Science and Engineering’, Wiley, New York (1982) pp. 34–48.

    Google Scholar 

  5. D. Britz, ‘Digital Simulation in Electrochemistry’, 1st edn, Springer, Berlin (1980).

    Google Scholar 

  6. C. J. H. King and D. E. Danley, ‘Experimental Measurement of Current Leakage in a Commercial Scale Bipolar Cell Stack’, The Electrochemical Society Extended Abstracts, May 1982. (Cited in [7]).

  7. J. W. Holmes and R. E. White, in ‘Electrochemical Cell Design’ (Ed. R. E. White), Plenum, New York (1984) p. 311.

    Google Scholar 

  8. E. C. Dimpault-Darcy and R. E. White,J. Electrochem. Soc. 135 (1988) 656.

    Google Scholar 

  9. I. Rousar, K. Micka and A. Kimla, ‘Electrochemical Engineering’, Elsevier, Amsterdam (1986).

    Google Scholar 

  10. J. Divisek, J. Mergel and H. Schmitz, ‘Advanced water electrolysis cell in discontinuous operation mode’, in Hydrogen Energy Progress VII edited by T. N. Veziroglu and A. N. Protsenko, Pergamon, Oxford (1988) p. 327.

    Google Scholar 

  11. J. Divisek and L. Fürst, ‘Ermittlung des Potentialprofils in einem bipolaren Elektrolyseur’, DECHEMA-Monographie 1989, p. 245.

  12. T. V. Nguyen and R. E. White,Comput. Chem. Engng. 11 (1987) 543.

    Google Scholar 

  13. H. S. Burney and R. E. White,J. Electrochem. Soc. 135 (1988) 1609.

    Google Scholar 

  14. C. M. Criss and J. W. Cobble,J. Am. Chem. Soc. 86 (1964) 5385.

    Google Scholar 

  15. Idem, ibid. 86 (1964) 5390.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Divisek, J., Jung, R. & Britz, D. Potential distribution and electrode stability in a bipolar electrolysis cell. J Appl Electrochem 20, 186–195 (1990). https://doi.org/10.1007/BF01033594

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01033594

Keywords

Navigation