Skip to main content
Log in

Enhanced oxygen transfer rates in fermentation using soybean oil-in-water dispersions

  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Summary

The effect of soybean oil on the volumetric oxygen transfer coefficient during the cultivation ofAerobacter aerogenes cells is presented. For our aeration-agitation conditions (0.278 vvm and 500 rpm), it has been demonstrated that the use 19% (v/v) of soybean oil enabled a 1.85-fold increase of thek l a coefficient (calculated on a per liter aqueous phase basis). For smaller volumetric oil fractions,k L a increased linearly with the oil loading. Because of the oxygen-vector properties of soybean oil, this oil is able to significantly increase thek L a of a bioreactor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

C*, C:

saturation and actual dissolved oxygen concentrations respectively (g/m3)

KLa:

volumetric oxygen transfer coefficient (h−1)

KLainitial :

k La measured before the oil addition (h−1)

MO2 :

molar mass of oxygen (dalton)

N:

oxygen transfer rate (g/m3. h)

PO2. PN2 :

partial pressures ofO 2 andN 2 in the gas (atm)

PH2OT :

partial pressure of water in air at the temperatureT (atm)

PT :

total pressure (atm)

Q0 :

volumetric flow rate of outlet air before seeding (m3/h)

Sp:

spreading coefficient (dynes/cm)

T:

absolute temperature of outlet gas (K)

Vi :

volume of the liquidi in the fermentor (m3)

VM :

molar volume at 273 K and 1 atm (m3/mole)

σij :

interfacial tension betweeni andj componants (dynes/cm)

v :

volumetric fraction of the oil (v/v)

G:

gas

O:

oil

W:

water

i:

inlet

o:

outlet

References

  • Adler, I., Diekmann, J., Hartke, W., Hecht, V., Rohn, F., andSchugerl, K. (1980). Eur. J. Appl. Microbiol. Biotechnol. 10, 171–186.

    Google Scholar 

  • Bader, F.G., Boekeloo, M.K., Graham, H.E., andCagle, J.W. (1984). Biotechnol. Bioeng. 26, 848–856.

    Google Scholar 

  • Eiki, H., Gushima, H., Saito, T., Ishida, H., Oka, Y., andOsono, T. (1988). J. Ferment. Technol. 66, 559–565.

    Google Scholar 

  • Ettler, P. (1987). Acta Biotechnol. 7, 3–8.

    Google Scholar 

  • Huber, F.M., andTietz, A.J. (1983). Biotechnol. Lett. 5, 385–390.

    Google Scholar 

  • Kralovcova, E., Krumphanzl, V., andVanek, Z. (1984). Folia Microbiol. 29, 35–42.

    Google Scholar 

  • Leuchtenberger, A., andRuttloff, H. (1985). Acta Biotechnol. 5, 293–296.

    Google Scholar 

  • Linek, V., andBenes, P. (1976). Chem. Engng. Sci. 31, 1037–1046.

    Google Scholar 

  • Mc Millan, J.D., andWang, D.I.C. (1987). Ann. N. Y. Acad. Sci. USA 506, 569–582.

    Google Scholar 

  • Mc Millan, J.D., andWang, D.I.C. (1990). Ann. N. Y. Acad. Sci. USA 589, 283–300.

    Google Scholar 

  • Motkova, M.O., Drobysheva, T.N., Gladkikh, E.G., andKorobkova, T.P. (1983). Antibiotiki 28, 814–818.

    Google Scholar 

  • Mozes, M., andRouxhet, P.G. (1987). J. Microbiol. Methods 6, 99–112.

    Google Scholar 

  • Prochazka, P., Nohynek, M., Vanek, Z., andRokos, J. (1983). Folia Microbiol. 28, 406–408.

    Google Scholar 

  • Ramachandran, K.B., andGoma, G. (1988). J. Biotechnol. 9, 39–46.

    Google Scholar 

  • Rezanka, T., Vanek, Z., Klanova, K., andPodojil, M. (1984). Folia Microbiol. 29, 306–309.

    Google Scholar 

  • Rols, J.L., Condoret, J.S., Fonade, C., andGorna, G. (1990). Biotechnol. Bioeng. 35, 427–435.

    Google Scholar 

  • Rols, J.L., andGoma, G. (1989). Biotechnol. Adv. 7, 1–14.

    Google Scholar 

  • Rosenberg, M., Gutnick, D., andRosenberg, E. (1980). FEMS Microbiol. Lett. 9, 29–33.

    Google Scholar 

  • Ryu, D.D.Y., andHospodka, J. (1980). Biotechnol. Bioeng. 22, 289–298.

    Google Scholar 

  • Sablayrolles, J.M., andGoma, G. (1984). Biotechnol. Bioeng. 26, 148–155.

    Google Scholar 

  • Stowell, J.D. (1987). The application of oils and fats in antibiotic processes, in “Carbon substrates in biotechnology”, J.D. Stowell, A.J. Beardsmore, C.W. Keevil and J.R. Woodward, eds, Society for Gereral Microbiology, 21, 139–159, IRL Press.

    Google Scholar 

  • Surikova, E.I., andKalinina, M.V. (1969). Mikrobiologiya 37, 152–158.

    Google Scholar 

  • Vardar-Sukan, F. (1988). J. Chem. Tech. Biotechnol. 43, 39–47.

    Google Scholar 

  • Voigt, J., andSchugerl, K. (1981). Eur. J. Appl. Microbiol. Biotechnol. 11, 97–105.

    Google Scholar 

  • Winkler, L.W.Z. (1982). Physik. Chem. 9, 173.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rols, J.L., Goma, G. Enhanced oxygen transfer rates in fermentation using soybean oil-in-water dispersions. Biotechnol Lett 13, 7–12 (1991). https://doi.org/10.1007/BF01033508

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01033508

Keywords

Navigation