Skip to main content
Log in

Spatial autocorrelation as a criterion for retaining factors in ordinations of geographic data

  • Published:
Journal of the International Association for Mathematical Geology Aims and scope Submit manuscript

Abstract

Scientists often use factor analysis to reduce the number of dimensions needed to meaningfully describe the variation of species' abundances at a set of sample locations. Their assessments of appropriateness and adequacy of a factor solution for explaining observed geographic variation are limited to subjective considerations of numerical results and maps. Spatial autocorrelation analysis of the factor solution can be used to test the sufficiency of results objectively. This approach provides one way for investigators to determine how many factors should be retained and to evaluate the performance of those factors as descriptors of the spatial pattern.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Blackman, A. and Somayajulu, B. L. K., 1966, Pacific Pleistocene cores: Faunal analyses and geochronology: Science, v. 154, p. 886–889.

    Google Scholar 

  • Brubaker, L. B., 1980, Spatial patterns of tree growth anomalies in the Pacific Northwest: Ecology, v. 61, p. 798–807.

    Google Scholar 

  • Cattell, R. B., 1978, The Scientific use of factor analysis in behavioral and life sciences: Plenum Press, New York, 618 p.

    Google Scholar 

  • Cliff, A. D. and Ord, J. K., 1973, Spatial autocorrelation: Pion Press, Ltd., London, 175 p.

    Google Scholar 

  • Cliff, A. D. and Ord, J. K., 1981, Spatial processes: Models and applications: Pion Press, Ltd., London, 266 p.

    Google Scholar 

  • Crain, I. K. and Bhattacharyya, B. K., 1967, Treatment of non-equispaced two-dimensional data with a digital computer: Geoexploration, v. 5, p. 173–194.

    Google Scholar 

  • Crawford, C. B. and Koopman, P., 1973, A note on Horn's test for the number of factors in factor analysis: Mutlivar. Behav. Res., v. 8, p. 117–125.

    Google Scholar 

  • Davis, J. C. 1973, Statistics and data analysis in geology: John Wiley & Sons, New York, 550 p.

    Google Scholar 

  • Davis, R. E., 1976, Predictability of sea surface temperature and sea level pressure anomalies over the North Pacific Ocean: J. Phys. Oceanog., v. 6, p. 249–266.

    Google Scholar 

  • Davis, R. E., 1978, Predictability of sea level pressure over the North Pacific Ocean: J. Phys. Oceanog., v. 8, p. 233–246.

    Google Scholar 

  • Fritts, H. C., Blasing, T. J., Hayden, B. P., and Kutzbach, J. E., 1971, New techniques for specifying tree-growth and climate relationships and for reconstructing anomalies in paleoclimate: J. Appl. Met., v. 10, p. 845–864.

    Google Scholar 

  • Geary, R. C., 1954, The contiguity ratio and statistical mapping: The incorporated statistician, v. 5, p. 115–145.

    Google Scholar 

  • Goodman, D., 1979, Applications of eigenvector analysis in the resolution of spectral pattern in spatial and temporal ecological sequences;in Patil, G. P. and Rosenzweig, M. L. (Eds.), Contemporary quantitative ecology and related econometrics: International Co-operative Publishing House, Fairland, Maryland, p. 139–155.

    Google Scholar 

  • Harman, H. H., 1976, Modern factor analysis: The university of Chicago Press, Chicago, Illinois, 487 p.

    Google Scholar 

  • Harshman, R. A. and Reddon, J. R., 1984, Deciding the number of factors by comparing real with random data: A serious flaw and some possible corrections: submitted to Psychometrika.

  • Horn, J. L., 1965, A rationale and test for the number of factors in factor analysis: Psychometrika, v. 30, p. 179–185.

    Google Scholar 

  • Imbrie, J., van Donk, J., and Kipp, N. G., 1973, Paleoclimatic investigation of a late Pleistocene Caribbean deep-sea core: Comparison of isotopic and faunal methods: Quat. Res., v. 3, p. 10–37.

    Google Scholar 

  • Imbrie, J. and Kipp, N. G., 1971, A new micropaleontological method for quantitative paleoclimatology: Application to a late Pleistocene Caribbean core;in Turekian, K. K. (Ed.), The late cenozoic glacial ages: Yale University Press, New Haven, p. 71–181.

    Google Scholar 

  • Joreskog, K. G., Klovan, J. E., and Reyment, R. A., 1976, Geological factor analysis: Elsevier Press, Amsterdam, 178 p.

    Google Scholar 

  • Jumars, P. A., Thistle, D., and Jones, M. L., 1977, Detecting two-dimensional spatial structure in biological data: Oecologia (Berl.), v. 28, p. 109–123.

    Google Scholar 

  • Kaiser, H. F., 1960, The application of electronic computers to factor analysis: Ed. Psych. Meas., v. 20, p. 141–151.

    Google Scholar 

  • Kipp, N. G., 1976, New transfer function for estimating past sea-surface conditions from seabed distribution of planktonic Foraminiferal assemblages in the North Atlantic;in Cline, R. M. and Hays, J. D. (Eds.), Investigation of late quaternary paleoceanography and paleoclimatology: Geol. Soc. Amer. Mem., v. 145, p. 3–41.

    Google Scholar 

  • Lorenz, E. N., 1956, Empirical orthogonal functions and statistical weather predication: Scientific report no. 1, statistical forecasting project: Department of Meteorology, MIT, Cambridge, Massachusetts, 49 p.

    Google Scholar 

  • Moran, P. A. P., 1950, Notes on continuous stochastic phenomena: Biometrika, v. 37, p. 17–23.

    Google Scholar 

  • Mulaik, S. A., 1972, The foundations of factor analysis: McGraw-Hill, New York, 453 p.

    Google Scholar 

  • Oden, N. L., 1984, Assessing the significance of a spatial correlogram: Geogr. Anal., v. 16, p. 1–16.

    Google Scholar 

  • Overland, J. E. and Preisendorfer, R. W., 1982, A significance test for principal components applied to cyclone climatology: Mon. Weath. Rev., v. 110, p. 1–4.

    Google Scholar 

  • Rummel, R. J., 1970, Applied factor analysis: Northwestern University Press, Evanston, Illinois, 617 p.

    Google Scholar 

  • Sokal, R. R., 1979, Ecological parameters inferred from spatial correlograms;in Patil, G. and Rosenzweig, M. L. (Eds.), International Co-operative Publishing House, Fairland, Maryland, p. 167–196.

    Google Scholar 

  • Sokal, R. R., Bird, J., and Riska, B., 1980, Geographic variation inPemphigus populicaulis (Insecta: Aphididae) in eastern North America: Biol. J. Linn. Soc., v. 14, p. 163–200.

    Google Scholar 

  • Sokal, R. R. and Oden, N. L., 1978a, Spatial autocorrelation in biology, I, Methodology: Biol. J. Linn. Soc., v. 10, p. 199–228.

    Google Scholar 

  • Sokal, R. R. and Oden, N. L., 1978b, Spatial autocorrelation in biology. 2. Some biological implications and four applications of evolutionary and ecological interest: Biol. J. Linn. Soc., v. 10, p. 229–249.

    Google Scholar 

  • Sokal, R. R. and Riska, B., 1981, Geographic variation inPemphigus populitransversus (Insecta: Aphididae): Biol. J. Linn. Soc., v. 15, p. 201–233.

    Google Scholar 

  • Walsh, J. E. and Richman, M. E., 1981, Seasonality in the associations between surface temperatures over the United States and the north Pacific Ocean: Mon. Weath. Rev., v. 109, p. 767–783.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wartenberg, D. Spatial autocorrelation as a criterion for retaining factors in ordinations of geographic data. Mathematical Geology 17, 665–682 (1985). https://doi.org/10.1007/BF01031609

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01031609

Key words

Navigation