Skip to main content
Log in

Estimating quartz fabrics from piezoelectric measurements

  • Published:
Journal of the International Association for Mathematical Geology Aims and scope Submit manuscript

Abstract

An aggregate of piezoelectric minerals may itself be piezoelectric if the minerals are suitably aligned. Thus quartz-bearing rocks may be piezoelectric, since quartz is one such mineral. It has been shown that some rocks do possess this effect, termed a piezoelectric fabric (Bishop, 1981). The type of piezoelectric fabric may be determined by matching experimental data to theoretical models of piezoelectric fabrics. These theoretical models of pure quartz aggregates are derived by considering the symmetry of the preferred crystallographic directions of the aggregate grains. From the symmetry, the piezoelectric matrix of the model may be determined. The best-fitting model and the orientation of its fabric is obtained by equating the experimental data to each model in turn. For each model, the best fitting fabric orientation is determined by using an inversion routine. If the experimental data are due to a piezoelectric fabric and not to some random or nonpolar distribution of grains, the fabric type (c-axis point maximum or large-circle girdle) and its orientation with respect to the specimen may be determined. The positions and polarities of the quartz a-axes are also specified. A statistical examination of results from a quartz-mylonite shows that the problem of piezoelectric model fitting is well posed, in that the Eulerian angles that specify the fabric orientation are fairly independent “important” parameters and a sufficiently close fit of the model to the data can be obtained to determine the fabric.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agterberg, F. P., 1974, Developments in geomathematics: Elsevier.

  • Baker, D. W., Wenk, H. R., and Christie, J. M., 1969, X-ray analysis of preferred orientation in fine grained quartz aggregates: Jour. Geol., v. 77, p. 144–172.

    Google Scholar 

  • Bishop, J. R., 1978, Piezoelectric effects in rocks (unpublished PhD thesis): Macquarie University, Sydney, Australia.

    Google Scholar 

  • Bishop, J. R., 1981, Piezoelectric effects in quartz-rich rocks: Tectonophysics (In press).

  • Bond, W. L., 1943, Mathematics of physical properties of crystals: Bell Syst. Tech. Jour., v. 22, p. 1–72.

    Google Scholar 

  • Bunge, H. J. and Wenk, H. R., 1977, Three dimensional texture analysis of three quartzites (trigonal crystal and triclinic specimen symmetry): Tectonophysics, v. 40, p. 257–285.

    Google Scholar 

  • Cady, W. G., 1964, Piezoelectricity (2nd ed.): Dover (2 vols.), New York; 1st ed.: McGraw-Hill, New York, 1946, p. 822.

  • Davis, J. C., 1973, Statistics and data analysis in geology: John Wiley & Sons, New York, p. 550.

    Google Scholar 

  • Fisher, R., 1953, Dispersion on a sphere: Proc. Roy. Soc. London, ser. A., v. 217, p. 295–305.

    Google Scholar 

  • Frondel, C., 1962, System of mineralogy (vol. 3): John Wiley & Sons, New York.

    Google Scholar 

  • Hietanen, A., 1938, Petrology of Finnish quartzites: Bull. Geol. Comm. Finlande Nr., v. 122.

  • Institute of Radio Engineers, 1945, Standards on piezoelectric crystals: recommended terminology,in Cady, W. G., and van Dyke, K. S., 1942, Proposed standard conventions for expressing the elastic and piezoelectric properties of right and left quartz: Proc. Inst. Radio Eng., v. 30, p. 495–499.

    Google Scholar 

  • Institute of Radio Engineers, 1949, Standards on piezoelectric crystals: Proc. Inst. Radio Eng., v. 49, p. 1378–1395.

    Google Scholar 

  • Irving, E., 1964, Paleomagnetism and its application to geological and geophysical problems: John Wiley & Sons, New York, p. 399.

    Google Scholar 

  • Jupp, D. L. B. and Vozoff, K., 1975, Stable iterative methods for the inversion of geophysical data: Geophys. J. R. Astr. Soc., v. 42, p. 957–976.

    Google Scholar 

  • Kowalik, T. and Osborne, M. R., 1968, Methods for unconstrained optimization problems: American Elsevier, New York.

    Google Scholar 

  • Lanczos, C., 1958, Linear systems in self-adjoint form: Amer. Math. Monthly, v. 65, p. 665–679.

    Google Scholar 

  • Nye, J. F., 1957, Physical properties of crystals: Clarendon Press, Oxford, p. 322.

    Google Scholar 

  • Mardia, K. V., 1972, Statistics of directional data: Academic Press, New York.

    Google Scholar 

  • Paterson, M. S. and Weiss, L. E., 1961, Symmetry concepts in the structural analysis of deformed rocks: Geol. Soc. Amer. Bull., v. 72, p. 841–882.

    Google Scholar 

  • Ramsay, J. G., 1967, Folding and fracturing of rocks: McGraw-Hill, New York, p. 568.

    Google Scholar 

  • Rutherford, D. E., 1964, Classical mechanics: Oliver and Boyd, Edinburgh, p. 206.

    Google Scholar 

  • Sander, B., 1930, Gefügekunde der Gesteine: Springer, Vienna, p. 352.

    Google Scholar 

  • Shubnikov, A. V., 1946, Piezoelectric textures: Akad. Nauk, SSSR.

  • Shubnikov, A. V., Zheludev, I. S., Konstantinova, V. P., and Silvestrova, I. M., 1958, Etudes des textures piezoélectriques (trans. by A. Daknoff): Dunod, Paris.

    Google Scholar 

  • Turner, F. J., 1948, Evolution of the metamorphic rocks: Geol. Soc. Amer. Mem., v. 30, p. 149–282.

    Google Scholar 

  • Turner, F. J. and Weiss, L. E., 1963, Structural analysis of metamorphic tectonites: McGraw-Hill, New York, p. 545.

    Google Scholar 

  • Vozoff, K. and Jupp, D. L. B., 1977, Effective search for a buried layer: an approach to experimental design in geophysics: Aust. Soc. Exp. Geoph. Bull., v. 8, p. 6–15.

    Google Scholar 

  • Watson, G. S., 1966, The statistics of orientation data: J. Geol., v. 74, p. 786–797.

    Google Scholar 

  • Wellmer, F. W., 1970, Mathematische auswertung von piezoelektrischen messungen in der gefügekunde. (Computer-Einstaz in der Geologie): Clausthaler tekt. Hefte 10, p. 267–292.

    Google Scholar 

  • Wellmer, F. W., 1971, An approximation method for evaluation of the third-rank piezoelectric tensor of the symmetry 3:2 and its application in petrofabric studies: Jour. Math. Geol., v. 3, p. 375–378.

    Google Scholar 

  • Wilson, C. J. L., 1975, Preferred orientation in quartz ribbon mylonites: Bull. Geol. Soc. Amer., v. 86, p. 968–974.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bishop, J.R. Estimating quartz fabrics from piezoelectric measurements. Mathematical Geology 13, 261–289 (1981). https://doi.org/10.1007/BF01031514

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01031514

Key words

Navigation