Skip to main content
Log in

Results of 8-year continuous measurements of aerosol profiles in the stratosphere with discussion of the importance of stratospheric aerosols to an estimate of effects on the global climate

Ergebnisse fortlaufender Erfassung der stratosphärischen Aerosol-Profile über 8 Jahre hinweg mit Diskussion der Bedeutung stratosphärischer Aerosole im Hinblick auf die Abschätzung einer Klimabeeinflussung

  • Published:
Meteorology and Atmospheric Physics Aims and scope Submit manuscript

Summary

After a short description of the measuring technique used the results of an efficient lidar system to determine stratospheric aerosol profiles up to 30 km altitude are reported in detail. Technical data of the lidar system: 100 megawatt trasmitter energy, 20 n sec pulse length, 1/sec pulse repetition, 694 nm wavelength, single photon counting with use of a chopper for suppressing fluorescence of the laser crystal after the shot, fully-automated control of the measuring procedure and storage of data by computer.

Shown as examples are first individual profiles of the stratospheric aerosol distribution after the most violent eruption of the recent past (El Chichon 1982). These profiles reveal the rapid variations of the profile structure caused by the different flow conditions as a function of season. The results make clear that the fastest possible sequence of lidar measurements is required to obtain significant and application-oriented data.

The integrated backscattering is presented from the beginning of 1977 to the end of 1984. Its variations, resulting from a whole series of volcanic events during this period, are discussed in comparison with the back-ground conditions 1977/78.

The residence time of stratospheric aerosols is derived for different layers of the stratosphere with an estimate of the mean residence time of particles<0.5 μm diameter at the respective level.

The dramatic variation of the stratospheric aerosol distribution in 47o northern latitude shortly before and immediately after the El Chichon eruption and continuously until summer 1984 is shown by means of three-dimensional diagrams.

The different temporal trends in the behavior of the stratospheric aerosol in midlatitudes as a function of the latitude of volcanic eruptions are discussed by means of examples. Our results of measurements are compared with those of other groups. Calculations of the optical depth are shown from early 1982 to late 1984 and are compared with background conditions from 1978. The stratospheric aerosol mass in the column above the unit surface is grphically plotted as a function of time. In several passages it is pointed out that not only volcano El Chichon as the last — even though extreme volcanic event — has to be considered but also minor volcanic eruptions which took place in different countries in late summer and fall 1983.

Special sections give an overview of the available literature concerning the question of an impact on climate, especially on the northern hemispheric temperature by stratospheric turbidity, and conclusions are drawn as to the practical application of our measurement results.

Based on reliable data from the literature, a volcanically-induced cooling of the order of about 0.5 K is to be expected from the turn of the year 1984/85 on, followed by a gradual normalization (provided: no new major volcanic eruptions).

Zusammenfassung

Nach einer kurzen Beschreibung der angewandten Meßtechnik wird im Detail über die Ergebnisse der Anwendung eines leistungsfähigen Lidar-Systems (100 Megawatt abgegebene Energie, 20 n sec Pulsdauer, Pulsfrequenz 1/sec, Wellenlänge 694 nm, Einzel-Photonenzählung mit Anwendung eines Choppers zur Unterdrückung der Fluoreszenz des Laser-Kristalls nach dem Schuß, vollautomatische Steuerung des Meßvorganges und Speicherung der Daten mittels Computer) zur Erfassung der stratosphärischen Aerosol-Profile bis 35 km NN berichtet.

Als Meßbeispiele werden zunächst individuelle Profile der stratosphärischen Aerosolverteilung nach dem stärksten Vulkanausbruch der jüngsten Zeit (El Chichon 1982) gezeigt. Diese Profile lassen die raschen Variationen der Profilstruktur als Folge der unterschiedlichen stratosphärischen Strömungsbedingungen in Abhängigkeit von der Jahreszeit erkennen. Die Ergebnisse machen deutlich, daß eine möglichst dichte zeitliche Folge von Lidar-Messungen notwendig ist, um signifikante und für die Anwendung relevante Daten zu erhalten.

Anschließend wird die integrierte Rückstreuung von Beginn 1977 bis Ende 1984 dargestellt und deren Variationen als Folge einer ganzen Reihe von Vulkanereignissen in dieser Zeit — verglichen mit dem Background 1977/78 — diskutiert. Schließlich erfolgt eine Ableitung der Verweildauer der Aerosole in verschiedenen Schichten der Stratosphäre mit einer Abschätzung der mittleren Verweildauer von Partikeln<5 μm ϕ in den jeweiligen Stockwerken.

Der dramatische Ablauf der Feinstruktur der stratosphärischen Aerosolverteilung in 47o nördlicher Breite kurz vor, unmittelbar nach der Eruption des El Chichon sowie durchgehend bis zum Sommer 1984, wird in dreidimensionalen Diagrammen dargestellt. Die unterschiedlichen Zeitabläufe des Verhaltens des stratosphärischen Aerosols in mittleren Breiten in Abhängigkeit von der Breite der Vulkaneruption werden anhand typischer Beispiele diskutiert. Vergleiche mit den Meßergebnissen anderer Gruppen werden gezogen. Die Ergebnisse einer Berechnung der optischen Dicke werden von Anfang 1982 bis Ende 1984 dargestellt und mit dem Background 1978 verglichen. Schließlich wird die stratosphärische Aerosolmasse in der Säule über der Einheitsfläche als Funktion der Zeit graphisch dargestellt. Es wird an verschiedenen Stellen darauf hingewiesen, daß nicht bloß El Chicon als letztes — wenn auch extremes Vulkanereignis — in Betracht zu ziehen ist, sondern auch kleinere Vulkaneruptionen, welche sich in verschiedenen Ländern im Spätsommer und Herbst 1983 ereignet haben.

In gesonderten Abschnitten wird eine Übersicht über die vorliegende Literatur zur Frage der Beeinflussung des Klimas, insbesondere der nordhemisphärischen Temperatur durch stratosphärische Verstaubungen dargestellt und Schlüsse in bezug auf die praktische Anwendung unserer Meßergebnisse gezogen.

Mit einer nordhemisphärischen, vulkanisch bedingten Abkühlung in der unteren Troposphäre in der Größenordnung von im Mittel 0.5 K ab Jahreswechsel 1984/85, gefolgt von einer allmählichen Normalisierung (keine neuen starken Vulkaneruptionen vorausgesetzt) ist, gestützt auf verläßliche Daten aus der Literatur, zu rechnen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aldana EG, Garret K (1982) The disaster of El Chichon. National Geographic 162–5

  • Baldwin B et al (1976) Stratospheric aerosols and climatic change. Nature 263: 551–554

    Google Scholar 

  • Board on Atmospheric Sciences and Climate Commission on Physical Sciences, Mathematics, and Resources, National Research Council (1983) Changing climate, Report of the Carbon Dioxide Assessment Committee, National Academy Press, Wash DC

    Google Scholar 

  • Borsenkova II et al (1976) Izmenie temperatury vozducha severnogo polushariya za period 1881–1975. Met Gidrol 7: 27–35

    Google Scholar 

  • Borsenkova II (1974) On the possible influence of volcanic dust on the radiation and thermal regime (in Russian). Tr GGO, VYP 307: 36–42

    Google Scholar 

  • Bryson RA et al (1980) Volcanic activity and climatic changes. Science 207: 1041–1044

    Google Scholar 

  • Budyko MI (1969) The effect of solar radiation variations on the climate of the earth. Tellus 21: 611–619

    Google Scholar 

  • Budyko MI (1977) Climatic changes. AGU, Wash, DC

    Google Scholar 

  • Cadle RD, Kiang CS, Louis JF (1976) The global scale dispersion of the eruption clouds from major volcanic eruptions. J Geophys Res 81: 3125–3132

    Google Scholar 

  • Chylek P, Coakley JA (1974) Aerosols and climate. Science 183: 75–77

    Google Scholar 

  • Crutzen PJ, Galbally IE, Brühl Ch (1984) Atmospheric effects from post-nuclear fires. Climatic Change 6: 323–364

    Google Scholar 

  • Danielsen EF, McCormick MP et al (1981) Reports from science, Mount St. Helens. Science 211: 815–838

    Google Scholar 

  • EOS (1984) Winter Weather Forecasts 65: 1241

    Google Scholar 

  • Flohn H (1979) Ziszeit oder Warmzeit? Fakten und Überlegungen zur Klimaentwicklung. Naturwiss. 66: 325–330

    Google Scholar 

  • Grams G, Fiocco G (1967) Stratospheric aerosol layer during 1964 and 1965. J Geophys Res 72: 3523–3541

    Google Scholar 

  • Hansen JE et al (1978) Mount Agung eruption provides test of a global climate perturbations. Science 109

  • Hansen J et al (1981) Climate impact of increasing atmospheric carbon dioxide. Science 213: 957–966

    Google Scholar 

  • Hayashida S, Iwasaka Y (1983) Lidar observations of stratospheric aerosol increase after the El Chichon eruption: Nagoya, April to December 1982. Memoirs of Nat Inst Polar Res, Special Issue 29, Proc 5th Symposium of Polar Meteorology and Glaciology, Tokyo

  • Hayashida S et al (1984) Laser radar measurements of the stratospheric aerosol (II). WRI MAP Research Note-3, Middle Atmosphere Res Group, Water Research Inst, Nagoya University

  • Hirono M, Fujiwara M, Shibata T, Kugumiya N (1981) Lidar observations of volcanic clouds in the stratosphere over Fukuoka, caused by eruptions of Mount St. Helens in May 1980. Geophys Res Lett 8: 1019–1022

    Google Scholar 

  • Hirono M, Shibata T (1983) Enormous increase of stratospheric aerosols over Fukuoka due to volcanic eruption of El Chichon in 1982. Geophys Res Lett 10: 152

    Google Scholar 

  • Hirono M, Shibata T, Fujiwara M, Fujiwara N (1984) Enormous increase of volcanic clouds in the stratosphere over Fukuoka after April 1982. Geof Int 23–2: 259–276

    Google Scholar 

  • Hofmann DJ, Rosen JM (1983) Stratospheric sulfuric acid fraction and mass estimate for the 1982 volcanic eruption of El Chichon. Geophys Res Lett 10: 313

    Google Scholar 

  • Hofmann DJ, Rosen JM (1984) Balloonborne particle counter observations of the El Chichon aerosol layers in the 0.01–1.8 μm radius range. Geof Int 23–2: 155–185

    Google Scholar 

  • Hofmann DJ, Rosen JM, Reiter R, Jäger H (1983) Lidar and balloon-borne particle counter comparisons following recent volcanic eruptions. J Geophys Res 88: 3777–3782

    Google Scholar 

  • Hunt BG (1977) A simulation of the possible consequences of a volcanic eruption on the general circulation of the atmosphere. Mon Weath Rev 105: 247–260

    Google Scholar 

  • Itabe T, Fujiwara M, Hirono M (1977) Temporal variations of the stratospheric aerosol layer after the Fuego eruption observed by lidar in Fukuoka. J. Met Soc Japan 55: 606–611

    Google Scholar 

  • Iwasaka Y, Isono K (1977) Lidar observations of the stratospheric aerosols at two different wavelengths, 0.6934 μm and 1.06 μm. J Atmos Terr Phys 39: 117–120

    Google Scholar 

  • Iwasaka Y, Mita A, Isono K (1976) Measurements of the stratospheric aerosols by two-color lidar. Rept Ionos Space Res Japan 30: 51–55

    Google Scholar 

  • Iwasaka Y et al (1983) Increasing backscattered light from the stratospheric aerosol layer after Mount El Chichon eruption laser radar measurement at Nagoya (35°N, 137°E). Geophys Res Lett 10: 440–442

    Google Scholar 

  • Jäger H, Reiter R, Carnuth W, Funk W (1984a) El Chichon cloud over Central Europe “Atmospheric effects of the 1982 eruptions of El Chichon volcano”. IAMAP — Hamburg 1983, Symposium R-2. Special Issue Geof Int 23–2: 243–257

    Google Scholar 

  • Jäger H, Reiter R, Carnuth W, Sun Jian (1984b) Stratospheric aerosol layers during 1982 and 1983 as observed by lidar at Garmisch-Partenkirchen. 12th Int Laser Radar Conference, Aix-en-Provence, August 1984

  • Karol' IL (1973) The size of radioactive aerosol and its transfer in the troposphere and stratosphere (in Russian). Met Gidrol 1: 28–38

    Google Scholar 

  • Kelly PM (1977) Volcanic dust veils and North Atlantic climatic change. Nature 268: 616–617

    Google Scholar 

  • Kondo Y, Reiter R, Jäger H, Takagi M (1982) The effect of the Mount St. Helens eruption cloud on tropospheric and stratospheric ions. PAGEOPH, Birkhäuser Verlag, Basel, 120: 11–17

    Google Scholar 

  • Labitzke K, Naujokat B (1983) On the variability and on trends of the temperature in the middle stratosphere. Paper presented at IUGG General Assembly, Hamburg

  • Labitzke K et al (1983) Temperature effects in the stratosphere of the April 4, 1982 eruption of El Chichon, Mexico. Geophys Res Lett 10: 24–26

    Google Scholar 

  • Lamb HH (1972) Volcanic dust in the atmosphere, with a chronology and assessment of its meteorological significance. Phil Trans Roy Soc London A266: 425–533

    Google Scholar 

  • Lamb HH (1972) Climate present, past and future, Vol. I. Methuen and Co. Ltd, London

    Google Scholar 

  • Manabe S, Wetherald RT (1967) Thermal equilibrium of the atmosphere with a given distribution of relative humidity. J Atmos Sci 24: 241

    Google Scholar 

  • Mass C, Schneider StH (1977) Statistical evidence on the influence of sunspots and volcanic dust on long-term temperature records. J Atmos Sci 34: 1995–2004

    Google Scholar 

  • McCormick MP (1984a) Special session IUGG Hamburg 1983. Published by Galindo et al in Geofisica Internacional 23

  • McCormick MP (1984b) Special session during international laser radar conference, Aix-en-Provence

  • McCormick MP, Steele HM, Hamill P, Chu WP, Swissler TJ (1982) Polar stratospheric cloud sightings by SAM II J Atmos Sci 39: 1387–1397

    Google Scholar 

  • McCormick MP, Swissler TJ, Chu WP, Fuller WH Jr (1978) Post-volcanic stratospheric aerosol decay as measured by lidar. J Atmos Sci 35: 1296

    Google Scholar 

  • Mendonca B et al (1978) Volcanically related secular trends in atmospheric transmission at Mauna Loa Observatory, Hawaii. Science 202: 513–515

    Google Scholar 

  • Meixner FX, Georgii H-W, Ockelmann G (1981) The arrival of the Mount St. Helens eruption cloud over Europe. Geophys Res Lett 8: 163–166

    Google Scholar 

  • Miles MK, Gildersleeves PB (1978) Volcanic dust and changes in Northern Hemisphere Temperature. Nature 271: 735–736

    Google Scholar 

  • Mitchell JM Jr (1970) A preliminary evaluation of atmospheric pollution as a cause of the global temperature fluctuation of the past century. In: Singer SF (ed) Global effects of environmental pollution. Springer, New York, pp 139–155

    Google Scholar 

  • Mitchell JM Jr (1975) Note on solar variability and volcanic activity as potential sources of climatic variability. WMO GARP Publication Series 16: 127–131

    Google Scholar 

  • Mitchell JM Jr (1982a) El Chichon, weather-maker of the century? Weatherwise 35: 252–262

    Google Scholar 

  • Mitchell JM Jr (1982b) Empirical modeling of effects of solar variability, volcanic events, and carbon dioxide and global-scale average air temperature since A.D. 1880. Paper presented at the 2nd Int Conf Solar-Terrestrial Effects on Weather and Climate, Boulder, CO, August 1982

  • Mitchell JM Jr (1982c) Personal communication at NOAA, Silver Springs, MD, USA

    Google Scholar 

  • Mitchell JM Jr (1983) An empirical modeling assessment of volcanic and CO2 effects on global scale temperature. Amer Met Soc, 2nd Conf on Climate Variations, New Orleans, Luisiana, January 1983

  • Newell RE (1981) Further studies of the atmospheric temperature change by the Mount Agung volcanic eruption in 1963. J of Vole and Geoth Res 11

  • Newell RE, Deepak A (eds) (1982) Mount St. Helens eruptions of 1980' NASA SP-458, Wash, DC

  • Oliver RC (1976) On the response of hemispheric mean temperature of stratospheric dust: An empirical approach. J Appl Met 15: 933–950

    Google Scholar 

  • Parry ML (1985) Estimating the sensitivity of natural ecosystems and agriculture to climatic change — Guest Editorial. Climatic Change 7: 1–3

    Google Scholar 

  • Parry JL et al (1985) The effect of climatic variations on agricultural risk. Climatic Change 7: 95–110

    Google Scholar 

  • Patterson EM (1981) Measurements of the imaginary part of the refractive index between 300 and 700 nanometers for Mount St. Helens Ash. Science 211: 836–838

    Google Scholar 

  • Pollack JB, McCormick MP (1981) Special issue on aircraft and spacecraft measurements of stratospheric aerosols and their implications. Geophys Res Lett 8

  • Pollack Jb, Toon OB (1974) A study of the effect of stratospheric aerosols produced by SST emission on the albedo and climate of the earth' Proc 3rd Conf Climatic Impact Assessment Program, Dept of Transport, Wash, DC, DOT-TSC-OST-74-15, p 457

  • Pollack JB et al (1976) Volcanic explosions and climatic change: A theoretical assessment. J Geophys Res 81: 1071–1083

    Google Scholar 

  • Reck RA, Hummel JR (eds) (1982) Interpretation of climate and photochemical models, ozone and temperature measurements. Amer Inst Phys, AIP Conf, Proc 82

  • Reiter ER (1974) CIAP report of findings, DOT-TST-75-50, p C-62

  • Reiter ER, Carnuth W, Kanter HJ, Pötzl K, Reiter R, Sladkovic R (1975) Measurements of stratosperic residence times. Arch Met Geoph Biocl A24: 41–51

    Google Scholar 

  • Reiter R, Heck H (1983a) Die ratselhafte Wolke: Vulkane verändern unser Klima. Bild der Wissenschaft März: 32–41

  • Reiter R, Munzert K (1983b) Cosmogenic radionuclides at a mountain station under fallout background conditions with consideration of the stratospheric residence time. Arch Met Geoph Biocl B33: 187–197

    Google Scholar 

  • Reiter R, Sladkovic R (1985) Is — according to the present state of knowledge — the stratospheric ozone affected by El Chichon related volcanic aerosol in the stratosphere? Academia Liguri e Lettre, Special issue, 150th year of foundation of the Geophys. Obs. of Genova

  • Reiter R, Jäger H, Carnuth W, Funk W (1979) The stratospheric aerosol layer observed by lidar since October 1976. A contribution to the problem of hemispheric climate. Arch Met Geoph Biocl B27: 121–149

    Google Scholar 

  • Reiter R, Jäger H, Carmuth W, Funk W (1980) Lidar observations of the Mount St. Helens eruption clouds over Mid-Europe, May to July 1980. Geophys Res Lett 7: 1099–1101

    Google Scholar 

  • Reiter R, Jäger H, Carnuth W, Funk W (1982a): A Stratospheric aerosol increase during 1981, observed by lidar over Mid-Europe. Geophys Res Lett 9: 469–472

    Google Scholar 

  • Reiter R, Jäger H, Carnuth W, Funk W (1982b) The stratospheric aerosol increase in February and March 1982. Geophys Res Lett 9: 858–859

    Google Scholar 

  • Reiter R, Jäger H, Carnuth W, Funk W (1983a) Eruptionswolken des Vulkans El Chichon über Mitteleuropa. Die Naturwissenschaften 70: 194–195

    Google Scholar 

  • Reiter R, Jäger H, Carnuth W, Funk W (1983b) Effects of volcanic eruptions on concentration and vertical profiles of the stratospheric aerosol and conclusions as to optical depth, transmission, and possible climate changes. Environmental Pollution Monitoring Research Program No 20, WMO Technical Conference on Observation and Measurements of Atmospheric Contaminants (TECOMAC) Vienna, 17–21 October 1983

  • Reiter R, Jäger H, Carnuth W, Funk W (1983c): The El Chichon cloud over Central Europe, observed by lidar at Garmisch-Partenkirchen during 1982. Geophys Res Lett 10: 1001–1004

    Google Scholar 

  • Reiter R, Munzert K, Kanter HJ, Pötzl K (1983d) Radionuclides and ozone at a mountain station at 3.0 km a.s.l. Arch Met Geoph Biocl B32: 132–160

    Google Scholar 

  • Robock A (1981) The Mount St. Helens volcanic eruption of 18 May 1980: Minimal climatic effects. Science 212: 1383–1384

    Google Scholar 

  • Rosen JM, Hofmann DJ (1980) A new stratospheric aerosol increase. Geophys Res Lett 7: 669–672

    Google Scholar 

  • Roosen GR et al (1984) Atmospheric transmission and climate: Results from Smithsonian measurements. Bull Amer Met Soc 65: 950–957

    Google Scholar 

  • Russell PB, Hake RD Jr (1977) The Post-Fuego stratospheric aerosol, lidar measurements with radiative and thermal implications. J Atmos Sci 34: 163–177

    Google Scholar 

  • Russell PB, Viezee W, Hake RD Jr, Collis RTH (1976) Lidar observations of the stratospheric aerosol: California, October 1972 to March 1984. Quart J R Met Soc 102: 675–695

    Google Scholar 

  • Schneider H, Mass C (1975) Volcanic dust, sunspots, and temperature trends. Science 190: 741–746

    Google Scholar 

  • Schneider StH (1983) Volcanic dust veils and climate: How clear is the connection? — An Editorial. Climatic Change 5: 111–113

    Google Scholar 

  • Simkin T, Fiske RS (1983a) Krakatau 1883: A classic geophysical event. EOS 64: 513–514

    Google Scholar 

  • Simkin T, Fiske RS (1983b) Krakatau 1883. Smithsonian Institution Press, Wash, DC

    Google Scholar 

  • Singer SF (ed) (1975) The changing global environment. D Reidel Publishing Co, Dordrecht-Holland

    Google Scholar 

  • Steele HM, Hamill P, McCormick MP, Swissler TJ (1983) The formation of stratospheric clouds. J Atmos Sci 40: 2055–2067

    Google Scholar 

  • Stommel H (1983) Do late grape harvests follow large volcanic eruptions? Bull Amer Met Soc 64, 974–975

    Google Scholar 

  • Strong AE (1984) Monitoring El Chichon aerosol distributions using NOAA-7 satellite AVHRR sea surface temperature observations. Geof Int 23–2

  • Taylor BL et al (1980) Volcanic eruptions and long-term temperature records: An empirical search for cause and effect. Quart J R Met Soc 106

  • Turco P et al (1984) Die klimatischen Auswirkungen eines Nuklearkrieges. Spektrum der Wissenschaft, Oktober 1984

  • Weller G et al (1983) Detection and monitoring of CO2-induced climate changes. In: Changing climate, Report of the Carbon Dioxide Assessment Committee, National Academy Press, Wash, DC

    Google Scholar 

  • Yamamoto R, Iwashima T (1975) Change of the surface air temperature averaged over the Northerm Hemisphere and large volcanic eruptions during the years 1951–1972. J Met Soc Japan 53: 482–486

    Google Scholar 

References

  • Berliner Wetterkarte (1985) Ausgabe März und April

  • Chou MD, Peng L, Arking A (1984) Climate studies with a multilayer energy balance model, part III: Climate impact of stratospheric volcanic aerosols. J Atmos Sci 41: 759–767

    Google Scholar 

  • Flohn H (1985) Das eigentliche Risiko: Änderung des Wasserkühlhaushaltes. Umschau 3: 157–158

    Google Scholar 

  • Handler P (1986) Possible association between the climatic effects of stratospheric aerosols and sea surface temperature in the easterm troposphere Pacific

  • Jones PD (1985) Northern Hemisphere temperatures 1851–1984. Climate Monitor 14/1: 15–21

    Google Scholar 

  • Kondratyev KY (1985) Volcanoes and climate, USSR Academy of Science, Moscow

    Google Scholar 

  • Lenoble J, Tanre D, Deschamps PY, Herman M (1982) A simple method to compute the change in earth-atmosphere radiative balance due to a stratospheric layer. J Atmos Sci 39: 2565–2576

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 15 Figures

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reiter, R., Jäger, H. Results of 8-year continuous measurements of aerosol profiles in the stratosphere with discussion of the importance of stratospheric aerosols to an estimate of effects on the global climate. Meteorl. Atmos. Phys. 35, 19–48 (1986). https://doi.org/10.1007/BF01029521

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01029521

Keywords

Navigation