Skip to main content
Log in

Classical “freezing” of plane rotations: A proof of the Boltzmann-Jeans conjecture

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Using simple known methods and results of classical perturbation theory, especially those due to Nekhoroshev and Neishtadt, we study the energy exchanges between the rotational and the translational degrees of freedom in a particular model representing the planar motion of a rigid body in a bounded analytic potential. We prove that, if the angular velocityω is initially large, then the energy exchanges are small,O(ω −1), for times growing exponentially withω, |t|∼expω. We also deduce that in a scattering process from a (smooth) potential barrier, the overall change in the rotational energy of the incoming body is exponentially small inω, ℰ∼exp(−ω. The results are interpreted in the light of an old conjecture by Boltzmann and Jeans on the existence of very large time scales for equilibrium in statistical systems containing high-frequency degrees of freedom (purely classical “freezing” of the high-frequency degrees of freedom); the rotating object is, in this interpretation, a (classical) molecule, which moves in an external field, or collides with the wall of a container. Two different limits of largeω are considered, namely the limit of large rotational energy, and (as is interesting for the molecular interpretation) the limit of point mass, at finite rotational energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. N. Nekhoroshev,Fund. Anal. Appl. 5:338–339 (1971) [Funk. An. Ego Prilozheniya 5:82–83 (1971)].

    Google Scholar 

  2. N. N. Nekhoroshev,Usp. Mat. Nauk 32:5 (1977) [Buss. Math. Sun. 32:1 (1977)].

    Google Scholar 

  3. N. N. Nekhoroshev,Tr. Sem. Petrows. 1979(5):5 (1979) [Translated inTopics in Modern Mathematics: Petrovskii Seminar No. 5, O. A. Oleinik, eds. (Consultants Bureau, New York, 1985).

    Google Scholar 

  4. A. I. Neishtadt,Prikl. Matem. Mekan. 48:197 (1984) [PMM USSR 45:133 (1984)].

    Google Scholar 

  5. L. Boltzmann,Nature 51:413 (1895).

    Google Scholar 

  6. J. H. Jeans,Phil. Mag. 6:279 (1903).

    Google Scholar 

  7. J. H. Jeans,Phil. Mag. 10:91 (1905).

    Google Scholar 

  8. G. Benettin, L. Galgani, and A. Giorgilli,Phys. Lett. A 120:23 (1987).

    Google Scholar 

  9. G. Benettin, L. Galgani, and A. Giorgilli,Commun. Math. Phys. 113:87–103 (1987).

    Google Scholar 

  10. G. Benettin, L. Galgani, and A. Giorgilli,Commun. Math. Phys. 121:557–601 (1989).

    Google Scholar 

  11. G. Benettin, Nekhoroshev-like results for Hamiltonian dynamical systems, inNon-Linear Evolution and Chaotic Phenomena, G. Gallavotti and P. F. Zweifel, eds. (Plenum Press, New York, 1988).

    Google Scholar 

  12. L. Galgani, Relaxation times and the foundations of classical statistical mechanics in the light of modern perturbation theory, inNon-Linear Evolution and Chaotic Phenomena, G. Gallavotti and P. F. Zweifel, eds. (Plenum Press, New York, 1988).

    Google Scholar 

  13. L. Landau and E. Teller,Physik. Z. Sowjetunion 11:18 (1936).

    Google Scholar 

  14. D. Rapp,J. Chem. Phys. 32:735 (1960).

    Google Scholar 

  15. T. M. O'Neil, P. G. Hjorth, B. Beck, J. Fajans, and J. H. Malmberg, Collisional relaxation of strongly magnetized pure electron plasma (theory and experiment), preprint.

  16. O. Baldan and G. Benettin, Classical “freezing” of fast rotations: Numerical test of the Boltzmann-Jeans conjecture,J. Stat. Phys. 62:201 (1991).

    Google Scholar 

  17. G. Benettin, L. Galgani, and A. Giorgilli,Celestical Mechanics 37:1 (1985).

    Google Scholar 

  18. G. Benettin and G. Gallavotti,J. Stat. Phys. 44:293 (1985).

    Google Scholar 

  19. F. Fasso, Lie series method for vector fields and Hamiltonian perturbation theory,J. Appl. Math. Phys. (ZAMP) 41:843 (1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benettin, G., Fassò, F. Classical “freezing” of plane rotations: A proof of the Boltzmann-Jeans conjecture. J Stat Phys 63, 737–760 (1991). https://doi.org/10.1007/BF01029209

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01029209

Key words

Navigation